直接上手操作R语言-1-文献计量分析

说起R语言的文献计量分析,就几乎与bibliometrix包划等号了,而且我认为每个非专业研究者接触R语言应该最早就是接触这个包,毕竟不管做什么研究,最开始都会做文献调研或者说文献综述。随便检索任何一个网络平台,对于这个包的使用经验分享并不罕见。而且现如今bibliometrix包已经升级为了biblioshiny,用可视化的操作界面代替了原本的代码操作,这对新手玩家而言,无疑是十分友好的。

进入应用之前还得介绍一点背景知识,文献计量不仅仅是R可以做,还有很多软件都可以操作。从这个角度来讲,文献计量分析工具可以说是百花齐放、百家争鸣了,除了R语言以外,只要肯下功夫(自己造轮子)利用其他任何编程语言,我觉得都可以达到同样的目的。那么除了R语言外,有没有什么更加便捷的软件可以实现文献计量分析的目的呢。那必然是有的,例如陈超美教授的Citespace、崔雷教授的BICOMB这两个在国内比较出名,另外还有Bibexcel、Vosviewer、Histcite等等,相关内容也可以参考科学计量与知识图谱系列丛书,对很多工具用法都有介绍。

另外,大家在使用过程中可以参考下面这篇论文,是介绍bibliometrix包的,国内也有学者将这篇文章翻译成汉语供大家参考了,链接我也贴在下面。

ARIA M, CUCCURULLO C. Bibliometrix: an r-tool for comprehensive science mapping analysis[J]. Journal of Informetrics, 2017, 11(4): 959–975. DOI:10.1016/j.joi.2017.08.007.

bibliometrix:用于文献计量科学制图分析的R语言工具

那么我们就进入这次文献计量分析之旅吧。

文献计量分析,或者说科技文本挖掘,不管称呼是什么,基本操作环节其实是一致的,那就是数据抓取、数据清洗、数据分析到最后产出结果。

开始的第一步我们先需要找到我们需要分析的数据,国内外的文献分析所抓取的数据来源是不同的,国内一般是下载知网数据,国外的话就是WOS数据等等,相对来说国外的数据库多一些,而且有各种专业的数据库,不像是中国的基本全在知网上。

我这边就以互动小说为例吧,首先去WOS网站上搜索互动小说。

在WOS里面选择核心,然后以互动小说为关键词进行主题检索。最终是检索到428条文献,我们把这些数据通过纯文本的形式导出来。这里需要注意的是,如果数据量太大的话,可以多次导出制作成压缩包也是可以使用的。

我这边以纯文本的形式导出所有的文献数据信息。

导出后是一个纯文本的文件,我们可以用记事本或者其他的文本工具打开看里面的数据信息,这边我就不演示了,大家可以自己操作。

接下来就是用R语言的各种包来分析这个文本文件中的数据并进行可视化了。

首先需要安装R语言、Rtools、Rstudio这些基本的操作环境,具体的去官网搜索直接下载默认安装就行了,这边提示一下,有的新手喜欢自作聪明给各种软件设置路径啥的,到时候操作出了问题又不好解决,我建议刚开始使用的话就乖乖在C盘待着别乱窜。

安装好Rstudio以后,运行下面这行代码,就安装了bibliometrix包,这个过程中可能还要安装这个包依托的包,所以时间不一定多久,耐心等待就好了。

install.packages(‘bibliometrix’, dependencies=TRUE)

 安装好以后,就输入下面这两行代码:

library(bibliometrix)
biblioshiny()

 运行起来以后,就会启动浏览器,biblioshiny的初始界面就出来了。这里再重复一下,biblioshiny是bibliometrix包和shiny包的强强联合,由shiny提供交互页面,取代了原有的命令行形式的运行模式,降低了门槛,用起来更加方便,这得感谢那些做出贡献的大神们。

 

在上面这个打开的浏览器页面,点左边的 Data选项,然后点Import or load files,就可以导入数据了,就像下图所示:

右边最上面是导入数据时候的选项,导入完成后,会出现一个报表,没啥用我感觉,直接关了就是了。然后就会出现上面这样全部数据列表,我们就可以根据这些数据做一些简单的可视化图形分析了。

左边的菜单选项卡,就是各种分析的选项了,大家可以选择想做的分析,点击尝试一下。我这边以作者合作网络为例,做了个图。

 

图像可以保存,也可以通过右上角的按钮来调节各种参数,能制作出更加炫酷的图来。另外,也可以将网络文件导出进行进一步的美化啥的。

暂时就是这样,欢迎大家讨论交流哦。这点数据不能浪费,我先拿去做个小文章发表先。 

内容概要:本教程将指导读者如何使用R语言复制一篇《美国国家科学院院刊》(PNAS)文章中的散点图。通过详细讲解和实践代码示例,读者将学习如何在R语言环境中处理数据、利用ggplot2等图形包绘制散点图、以及如何调整图表的美学元素(如颜色、大小、形状等)以匹配原文的风格。此外,本教程还将涉及如何解读散点图中的数据关系和趋势,以及如何将这些视觉信息有效地用于科学交流和数据呈现。 适合人群:适合对R语言有基本了解,且对科学研究或数据可视化有兴趣的学生、研究人员和数据分析师。特别是那些希望提高自己在学术期刊发表物中数据呈现技巧的人员。 能学到什么: 如何在R语言中准备和处理数据以用于绘制散点图; 使用R语言中的ggplot2等包来复现学术文章中的散点图,包括图形的定制化设置; 解读散点图中展示的数据关系,包括变量间的相关性、趋势和潜在模式; 提升在科学交流和数据呈现方面的技能,特别是在复现和定制高质量图表方面。 阅读建议:为了最大化本教程的效益,读者应该在实际操作中跟随教程的步骤,细致地复现文章中的散点图。在此过程中,建议读者不仅关注图表的外观,还要理解数据背后的科学含义和逻辑关系。此外,鼓励读者尝试使用不同的数据集和图形元素,以提高自己在数据可视化方面的创新能力和技术熟练度。通过这种方式,读者可以更好地掌握如何在自己的研究和报告中有效地使用散点图来呈现复杂数据。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值