泊松分布,中心极限定理,势函数

本文详细介绍了泊松分布的基本概念,包括其概率分布律、期望和方差的计算,以及泊松分布的可加性和独立同分布随机变量的中心极限定理的应用实例。还通过编程展示了如何运用这些理论进行具体计算和可视化.
摘要由CSDN通过智能技术生成

一. 泊松分布

        设随机变量 X 的分布律为    

                           P(X=k)=\frac{\lambda ^k}{k!}e^{-\lambda },           k=0,1,2,\cdots

则称随机变量 X 服从参数为 \lambda 的泊松分布,其中 \lambda>0, 记为 P(\lambda ).

 查询分布律
dpois(0:7, lambda = 0.1)   #输出k=0,1,2,...,7,参数lambda为0.1时的概率

[1] 9.048374e-01 9.048374e-02 4.524187e-03 1.508062e-04 3.770156e-06
[6] 7.540312e-08 1.256719e-09 1.795312e-11
累积概率  P(X \leqslant k)
ppois(2,lambda = 0.1)     # 三个概率之和,P(k=0)+P(k=1)+P(k=2),参数为0.1

0.9998453

二. 泊松分布的期望和方差

          E(X)= \sum kp_{k}=\sum k \frac{\lambda ^k}{k!}e^{-\lambda }=\lambda .

          E(X^2)=E(X(X-1))+E(X)=\lambda ^2+\lambda.

          D(X)=E(X^2)-[E(X)]^2=\lambda .

三. 泊松分布的可加性

      若  X_{1} ~P(\lambda _{1}) , X_{2} ~ P(\lambda _{2}),且 X_{1} 与 X_{2} 相互独立,则  X_{1}+X_{2} ~  P(\lambda _{1}+\lambda _{2}).

四.  独立同分布的中心极限定理:

(1)        设 X_{1}X_{2}\cdots,是一个独立同分布的随机变量序列,且 E(X_{i})=\muD(X_{i})=\sigma ^{2}

(i=1,2,\cdots), 则对任意一个 x,-\infty <x<+\infty, 总有

                                 \displaystyle{\lim_{n\rightarrow\infty}}\displaystyle{P\bigl(\frac{\sum X_{i}-n\mu}{\sqrt{n}\sigma}\leq x\bigr)}=\Phi (x).

五. 相关例题

六. 具体的计算:

 (1) 使用中心极限定理.  记 g(\lambda) 表示势函数.

           \alpha (\lambda )=g(\lambda)= \displaystyle{P\bigl(\sum X_{i}< C\bigr)}

                                   =\displaystyle{P\bigl(\frac{\sum X_{i}-10\lambda }{\sqrt{10\lambda }}<\frac{C-10\lambda}{\sqrt{10\lambda }} \bigr)}

                                   \displaystyle=\Phi (\frac{C-10\lambda}{\sqrt{10\lambda }}), \lambda \geq 1.

       \beta (\lambda )=1-g(\lambda )=1-\displaystyle{P\bigl(\sum X_{i}< C\bigr)}

                                          \displaystyle=1-\Phi (\frac{C-10\lambda}{\sqrt{10\lambda }}), \lambda < 1.

(2)由泊松分布的可加性:\sum X_{i}  ~   P(n\lambda ).  取 n=10,C=5.

           \alpha (\lambda )= \displaystyle{P\bigl(\sum X_{i}< 5\bigr)},\lambda \geq 1.

           \beta (\lambda )=1-\displaystyle{P\bigl(\sum X_{i}< 5\bigr)}, \lambda < 1.

画图的代码
> s1<-c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0) #对参数Lamda取0~1之间不同的值,构成一个向量

> s2<-c(1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0)

> s<-c(s1,s2)                                       

> m1<-1-ppois(4,lambda =s1*10)   #计算s1中Lamda取不同值时,1- 泊松分布的累积概率(小于5)

> m2<-ppois(4,lambda =s2*10)      #计算s2中Lamda取不同值时,泊松分布的累积概率(小于5)

> m<-c(m1,m2)                     #合并两个向量

> plot(s,m,pch=21,lty=3,ann=FALSE,xlim=c(0,2),ylim=c(0,1))  #画散点图

> lines(s,m)                       #画线

  • 10
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
泊松分布是一种离散概率分布,用于描述在一定时间或空间范围内发生某事件的次数的概率分布。中心极限定理概率论中的一个重要定理,它指出在一定条件下,大量独立随机变量的和近似服从正态分布。对于泊松分布中心极限定理可以用来近似计算泊松分布的和的概率。 在MATLAB中,可以使用rand函数生成服从泊松分布的随机数。具体步骤如下: 1. 设置泊松分布的参数λ(即平均发生率)。 2. 使用rand函数生成一组服从泊松分布的随机数。 3. 将生成的随机数求和,得到和的概率。 下面是一个MATLAB代码示例: ```matlab % 设置泊松分布的参数 lambda = 5; % 生成一组服从泊松分布的随机数 n = 1000; % 生成1000个随机数 poisson_data = poissrnd(lambda, n, 1); % 计算随机数的和 sum_data = cumsum(poisson_data); % 绘制和的概率分布图 histogram(sum_data, 'Normalization', 'pdf'); hold on; % 计算和的均值和标准差 mean_data = lambda * n; std_data = sqrt(lambda * n); % 计算正态分布的概率密度函数 x = linspace(mean_data - 4 * std_data, mean_data + 4 * std_data, 100); y = normpdf(x, mean_data, std_data); % 绘制正态分布曲线 plot(x, y, 'r', 'LineWidth', 2); hold off; % 设置图形标题和坐标轴标签 title('Central Limit Theorem for Poisson Distribution'); xlabel('Sum of Poisson Random Variables'); ylabel('Probability Density'); % 显示图形 grid on; ``` 这段代码首先设置了泊松分布的参数lambda,然后使用poissrnd函数生成一组服从泊松分布的随机数。接着,使用cumsum函数计算随机数的和,并使用histogram函数绘制和的概率分布图。最后,计算和的均值和标准差,并使用normpdf函数计算正态分布的概率密度函数,并绘制正态分布曲线。 通过运行这段代码,你可以观察到随着生成的随机数数量的增加,和的概率分布逐渐趋近于正态分布。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值