泊松分布,中心极限定理,势函数

一. 泊松分布

        设随机变量 X 的分布律为    

                           P(X=k)=\frac{\lambda ^k}{k!}e^{-\lambda },           k=0,1,2,\cdots

则称随机变量 X 服从参数为 \lambda 的泊松分布,其中 \lambda>0, 记为 P(\lambda ).

 查询分布律
dpois(0:7, lambda = 0.1)   #输出k=0,1,2,...,7,参数lambda为0.1时的概率

[1] 9.048374e-01 9.048374e-02 4.524187e-03 1.508062e-04 3.770156e-06
[6] 7.540312e-08 1.256719e-09 1.795312e-11
累积概率  P(X \leqslant k)
ppois(2,lambda = 0.1)     # 三个概率之和,P(k=0)+P(k=1)+P(k=2),参数为0.1

0.9998453

二. 泊松分布的期望和方差

          E(X)= \sum kp_{k}=\sum k \frac{\lambda ^k}{k!}e^{-\lambda }=\lambda .

          E(X^2)=E(X(X-1))+E(X)=\lambda ^2+\lambda.

          D(X)=E(X^2)-[E(X)]^2=\lambda .

三. 泊松分布的可加性

      若  X_{1} ~P(\lambda _{1}) , X_{2} ~ P(\lambda _{2}),且 X_{1} 与 X_{2} 相互独立,则  X_{1}+X_{2} ~  P(\lambda _{1}+\lambda _{2}).

四.  独立同分布的中心极限定理:

(1)        设 X_{1}X_{2}\cdots,是一个独立同分布的随机变量序列,且 E(X_{i})=\muD(X_{i})=\sigma ^{2}

(i=1,2,\cdots), 则对任意一个 x,-\infty <x<+\infty, 总有

                                 \displaystyle{\lim_{n\rightarrow\infty}}\displaystyle{P\bigl(\frac{\sum X_{i}-n\mu}{\sqrt{n}\sigma}\leq x\bigr)}=\Phi (x).

五. 相关例题

六. 具体的计算:

 (1) 使用中心极限定理.  记 g(\lambda) 表示势函数.

           \alpha (\lambda )=g(\lambda)= \displaystyle{P\bigl(\sum X_{i}< C\bigr)}

                                   =\displaystyle{P\bigl(\frac{\sum X_{i}-10\lambda }{\sqrt{10\lambda }}<\frac{C-10\lambda}{\sqrt{10\lambda }} \bigr)}

                                   \displaystyle=\Phi (\frac{C-10\lambda}{\sqrt{10\lambda }}), \lambda \geq 1.

       \beta (\lambda )=1-g(\lambda )=1-\displaystyle{P\bigl(\sum X_{i}< C\bigr)}

                                          \displaystyle=1-\Phi (\frac{C-10\lambda}{\sqrt{10\lambda }}), \lambda < 1.

(2)由泊松分布的可加性:\sum X_{i}  ~   P(n\lambda ).  取 n=10,C=5.

           \alpha (\lambda )= \displaystyle{P\bigl(\sum X_{i}< 5\bigr)},\lambda \geq 1.

           \beta (\lambda )=1-\displaystyle{P\bigl(\sum X_{i}< 5\bigr)}, \lambda < 1.

画图的代码
> s1<-c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0) #对参数Lamda取0~1之间不同的值,构成一个向量

> s2<-c(1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0)

> s<-c(s1,s2)                                       

> m1<-1-ppois(4,lambda =s1*10)   #计算s1中Lamda取不同值时,1- 泊松分布的累积概率(小于5)

> m2<-ppois(4,lambda =s2*10)      #计算s2中Lamda取不同值时,泊松分布的累积概率(小于5)

> m<-c(m1,m2)                     #合并两个向量

> plot(s,m,pch=21,lty=3,ann=FALSE,xlim=c(0,2),ylim=c(0,1))  #画散点图

> lines(s,m)                       #画线

  • 10
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值