ln ( lim x → ∞ ( 1 + 1 x ) x ) sin 2 ( π 2 ) + cos 2 ( π 2 ) × − 49 i − ( sin 2 θ ) 2 − ( cos 2 θ ) 2 − 1 − 2 sin 2 θ cos 2 θ + 2 sin 2 θ + 2 cos 2 θ sin 2 θ + cos 2 θ + 119025 − 291 × 409 \ln(\lim\limits_{x\to∞}(1+\dfrac{1}{x})^x)^{\sqrt{\sin^2(\dfrac{\pi}{2})+\cos^2(\dfrac{\pi}{2})}}\times \dfrac{\dfrac{\sqrt{-49}}{i}-(\sin^2\theta)^2-(\cos^2\theta)^2-1-2\sin^2\theta\cos^2\theta+2\sin^2\theta+2\cos^2\theta}{\sin^2\theta+\cos^2\theta+119025-291\times409} ln(x→∞lim(1+x1)x)sin2(2π)+cos2(2π)×sin2θ+cos2θ+119025−291×409i−49−(sin2θ)2−(cos2θ)2−1−2sin2θcos2θ+2sin2θ+2cos2θ
解:设 ln ( lim x → ∞ ( 1 + 1 x ) x ) sin 2 ( π 2 ) + c o s 2 ( π 2 ) \ln(\lim\limits_{x\to∞}(1+\dfrac{1}{x})^x)^{\sqrt{\sin^2(\dfrac{\pi}{2})+cos^2(\dfrac{\pi}{2})}} ln(x→∞lim(1+x1)x)sin2(2π)+cos2(2π) 为 A \text{A} A, − 49 i − ( sin 2 θ ) 2 − ( cos 2 θ ) 2 − 1 − 2 sin 2 θ cos 2 θ + 2 sin 2 θ + 2 cos 2 θ sin 2 θ + cos 2 θ + 119025 − 291 × 409 \dfrac{\dfrac{\sqrt{-49}}{i}-(\sin^2\theta)^2-(\cos^2\theta)^2-1-2\sin^2\theta\cos^2\theta+2\sin^2\theta+2\cos^2\theta}{\sin^2\theta+\cos^2\theta+119025-291\times409} sin2θ+cos2θ+119025−291×409i−49−(sin2θ)2−(cos2θ)2−1−2sin2θcos2θ+2sin2θ+2cos2θ 为 B \text{B} B,即原式等于 AB \text{AB} AB。
我们设 f ( x ) = 1 + 1 x f(x)=1+\dfrac{1}{x} f(x)=1+x1,对 f ( x ) f(x) f(x) 取自然对数即为: x ln ( 1 + 1 x ) x\ln(1+\dfrac{1}{x}) xln(1+x1),接下来我们求 lim x → ∞ x ln ( 1 + 1 x ) \lim\limits_{x\to\infty }x\ln(1+\dfrac{1}{x}) x→∞limxln(1+x1)。
lim x → ∞ x ln ( 1 + 1 x ) = lim x → ∞ ln ( 1 + 1 x ) 1 x \lim\limits_{x\to\infty }x\ln(1+\dfrac{1}{x})=\lim\limits_{x\to\infty }\cfrac{\ln(1+\cfrac{1}{x})}{\cfrac{1}{x}} x→∞limxln(1+x1)=x→∞limx1ln(1+x1)
我们分别对分母和分子求导,即:
lim x → ∞ d d x ln ( 1 + 1 x ) d d x 1 x = lim x → ∞ − 1 x 2 × 1 1 + 1 x − 1 x 2 \lim\limits_{x\to\infty }\cfrac{\cfrac{d}{dx}\ln(1+\cfrac{1}{x})}{\cfrac{d}{dx}\cfrac{1}{x}}=\lim\limits_{x\to\infty }\cfrac{\cfrac{-1}{x^2}\times\cfrac{1}{1+\cfrac{1}{x}}}{-\cfrac{1}{x^2}} x→∞limdxdx1dxdln(1+x1)=x→∞lim−x21x2−1×1+x11
由于
lim
x
→
∞
1
x
=
0
\lim\limits{x\to\infty}\dfrac{1}{x}=0
limx→∞x1=0,所以
lim
x
→
∞
−
1
x
2
×
1
1
+
1
x
−
1
x
2
=
lim
x
→
∞
1
×
−
1
x
2
−
1
x
2
=
1
\lim\limits_{x\to\infty }\cfrac{\cfrac{-1}{x^2}\times\cfrac{1}{1+\cfrac{1}{x}}}{-\cfrac{1}{x^2}}=\lim\limits_{x\to\infty }\cfrac{1\times-\cfrac{1}{x^2}}{-\cfrac{1}{x^2}}=1
x→∞lim−x21x2−1×1+x11=x→∞lim−x211×−x21=1
即 ln ( f ( x ) ) = 1 \ln(f(x))=1 ln(f(x))=1, f ( x ) = e f(x)=e f(x)=e, ln ( lim x → ∞ ( 1 + 1 x ) x ) = 1 \ln(\lim\limits_{x\to∞}(1+\dfrac{1}{x})^x)=1 ln(x→∞lim(1+x1)x)=1。
我们接着计算 A \text{A} A 的指数:
由于 sin 2 ( θ ) + cos 2 ( θ ) = 1 \sin^2(\theta)+\cos^2(\theta)=1 sin2(θ)+cos2(θ)=1,所以 sin 2 ( π 2 ) + cos 2 ( π 2 ) = 1 \sqrt{\sin^2(\dfrac{\pi}{2})+\cos^2(\dfrac{\pi}{2})}=1 sin2(2π)+cos2(2π)=1,所以 A = 1 1 = 1 \text{A}=1^1=1 A=11=1。
接着,我们计算 B \text{B} B。
− 49 i − ( sin 2 θ ) 2 − ( cos 2 θ ) 2 − 1 − 2 sin 2 θ cos 2 θ + 2 sin 2 θ + 2 cos 2 θ sin 2 θ + cos 2 θ + 119025 − 291 × 409 = 7 i i − [ ( sin 2 θ ) 2 + ( cos 2 θ ) 2 + 1 + 2 sin 2 θ cos 2 θ − 2 sin 2 θ − 2 cos 2 θ ] sin 2 θ + cos 2 θ + 6 \dfrac{\dfrac{\sqrt{-49}}{i}-(\sin^2\theta)^2-(\cos^2\theta)^2-1-2\sin^2\theta\cos^2\theta+2\sin^2\theta+2\cos^2\theta}{\sin^2\theta+\cos^2\theta+119025-291\times409}\\ =\dfrac{\dfrac{7i}{i}-[(\sin^2\theta)^2+(\cos^2\theta)^2+1+2\sin^2\theta\cos^2\theta-2\sin^2\theta-2\cos^2\theta]}{\sin^2\theta+\cos^2\theta+6} sin2θ+cos2θ+119025−291×409i−49−(sin2θ)2−(cos2θ)2−1−2sin2θcos2θ+2sin2θ+2cos2θ=sin2θ+cos2θ+6i7i−[(sin2θ)2+(cos2θ)2+1+2sin2θcos2θ−2sin2θ−2cos2θ]
由于 a 2 + b 2 + c 2 + 2 a b − 2 a − 2 b = ( a + b + c ) 2 a^2+b^2+c^2+2ab-2a-2b=(a+b+c)^2 a2+b2+c2+2ab−2a−2b=(a+b+c)2,得到:
7 − [ sin 2 θ + cos 2 θ − 1 ] 2 sin 2 θ + cos 2 θ + 6 \dfrac{7-[\sin^2\theta+\cos^2\theta-1]^2}{\sin^2\theta+\cos^2\theta+6} sin2θ+cos2θ+67−[sin2θ+cos2θ−1]2
由 sin 2 θ + cos 2 θ = 1 \sin^2\theta+\cos^2\theta=1 sin2θ+cos2θ=1 得到:
7 − [ 1 − 1 ] 2 1 + 6 = 1 \frac{7-[1-1]^2}{1+6}=1 1+67−[1−1]2=1
综上, AB = ln ( lim x → ∞ ( 1 + 1 x ) x ) sin 2 ( π 2 ) + cos 2 ( π 2 ) × − 49 i − ( sin 2 θ ) 2 − ( cos 2 θ ) 2 − 1 − 2 sin 2 θ cos 2 θ + 2 sin 2 θ + 2 cos 2 θ sin 2 θ + cos 2 θ + 119025 − 291 × 409 = 1 × 1 = 1 \text{AB}=\ln(\lim\limits_{x\to∞}(1+\dfrac{1}{x})^x)^{\sqrt{\sin^2(\dfrac{\pi}{2})+\cos^2(\dfrac{\pi}{2})}}\times \dfrac{\dfrac{\sqrt{-49}}{i}-(\sin^2\theta)^2-(\cos^2\theta)^2-1-2\sin^2\theta\cos^2\theta+2\sin^2\theta+2\cos^2\theta}{\sin^2\theta+\cos^2\theta+119025-291\times409}=1\times1=1 AB=ln(x→∞lim(1+x1)x)sin2(2π)+cos2(2π)×sin2θ+cos2θ+119025−291×409i−49−(sin2θ)2−(cos2θ)2−1−2sin2θcos2θ+2sin2θ+2cos2θ=1×1=1。