整活题目求解

ln ⁡ ( lim ⁡ x → ∞ ( 1 + 1 x ) x ) sin ⁡ 2 ( π 2 ) + cos ⁡ 2 ( π 2 ) × − 49 i − ( sin ⁡ 2 θ ) 2 − ( cos ⁡ 2 θ ) 2 − 1 − 2 sin ⁡ 2 θ cos ⁡ 2 θ + 2 sin ⁡ 2 θ + 2 cos ⁡ 2 θ sin ⁡ 2 θ + cos ⁡ 2 θ + 119025 − 291 × 409 \ln(\lim\limits_{x\to∞}(1+\dfrac{1}{x})^x)^{\sqrt{\sin^2(\dfrac{\pi}{2})+\cos^2(\dfrac{\pi}{2})}}\times \dfrac{\dfrac{\sqrt{-49}}{i}-(\sin^2\theta)^2-(\cos^2\theta)^2-1-2\sin^2\theta\cos^2\theta+2\sin^2\theta+2\cos^2\theta}{\sin^2\theta+\cos^2\theta+119025-291\times409} ln(xlim(1+x1)x)sin2(2π)+cos2(2π) ×sin2θ+cos2θ+119025291×409i49 (sin2θ)2(cos2θ)212sin2θcos2θ+2sin2θ+2cos2θ

解:设 ln ⁡ ( lim ⁡ x → ∞ ( 1 + 1 x ) x ) sin ⁡ 2 ( π 2 ) + c o s 2 ( π 2 ) \ln(\lim\limits_{x\to∞}(1+\dfrac{1}{x})^x)^{\sqrt{\sin^2(\dfrac{\pi}{2})+cos^2(\dfrac{\pi}{2})}} ln(xlim(1+x1)x)sin2(2π)+cos2(2π) A \text{A} A − 49 i − ( sin ⁡ 2 θ ) 2 − ( cos ⁡ 2 θ ) 2 − 1 − 2 sin ⁡ 2 θ cos ⁡ 2 θ + 2 sin ⁡ 2 θ + 2 cos ⁡ 2 θ sin ⁡ 2 θ + cos ⁡ 2 θ + 119025 − 291 × 409 \dfrac{\dfrac{\sqrt{-49}}{i}-(\sin^2\theta)^2-(\cos^2\theta)^2-1-2\sin^2\theta\cos^2\theta+2\sin^2\theta+2\cos^2\theta}{\sin^2\theta+\cos^2\theta+119025-291\times409} sin2θ+cos2θ+119025291×409i49 (sin2θ)2(cos2θ)212sin2θcos2θ+2sin2θ+2cos2θ B \text{B} B,即原式等于 AB \text{AB} AB

我们设 f ( x ) = 1 + 1 x f(x)=1+\dfrac{1}{x} f(x)=1+x1,对 f ( x ) f(x) f(x) 取自然对数即为: x ln ⁡ ( 1 + 1 x ) x\ln(1+\dfrac{1}{x}) xln(1+x1),接下来我们求 lim ⁡ x → ∞ x ln ⁡ ( 1 + 1 x ) \lim\limits_{x\to\infty }x\ln(1+\dfrac{1}{x}) xlimxln(1+x1)

lim ⁡ x → ∞ x ln ⁡ ( 1 + 1 x ) = lim ⁡ x → ∞ ln ⁡ ( 1 + 1 x ) 1 x \lim\limits_{x\to\infty }x\ln(1+\dfrac{1}{x})=\lim\limits_{x\to\infty }\cfrac{\ln(1+\cfrac{1}{x})}{\cfrac{1}{x}} xlimxln(1+x1)=xlimx1ln(1+x1)

我们分别对分母和分子求导,即:

lim ⁡ x → ∞ d d x ln ⁡ ( 1 + 1 x ) d d x 1 x = lim ⁡ x → ∞ − 1 x 2 × 1 1 + 1 x − 1 x 2 \lim\limits_{x\to\infty }\cfrac{\cfrac{d}{dx}\ln(1+\cfrac{1}{x})}{\cfrac{d}{dx}\cfrac{1}{x}}=\lim\limits_{x\to\infty }\cfrac{\cfrac{-1}{x^2}\times\cfrac{1}{1+\cfrac{1}{x}}}{-\cfrac{1}{x^2}} xlimdxdx1dxdln(1+x1)=xlimx21x21×1+x11

由于 lim ⁡ x → ∞ 1 x = 0 \lim\limits{x\to\infty}\dfrac{1}{x}=0 limxx1=0,所以
lim ⁡ x → ∞ − 1 x 2 × 1 1 + 1 x − 1 x 2 = lim ⁡ x → ∞ 1 × − 1 x 2 − 1 x 2 = 1 \lim\limits_{x\to\infty }\cfrac{\cfrac{-1}{x^2}\times\cfrac{1}{1+\cfrac{1}{x}}}{-\cfrac{1}{x^2}}=\lim\limits_{x\to\infty }\cfrac{1\times-\cfrac{1}{x^2}}{-\cfrac{1}{x^2}}=1 xlimx21x21×1+x11=xlimx211×x21=1

ln ⁡ ( f ( x ) ) = 1 \ln(f(x))=1 ln(f(x))=1 f ( x ) = e f(x)=e f(x)=e ln ⁡ ( lim ⁡ x → ∞ ( 1 + 1 x ) x ) = 1 \ln(\lim\limits_{x\to∞}(1+\dfrac{1}{x})^x)=1 ln(xlim(1+x1)x)=1

我们接着计算 A \text{A} A 的指数:

由于 sin ⁡ 2 ( θ ) + cos ⁡ 2 ( θ ) = 1 \sin^2(\theta)+\cos^2(\theta)=1 sin2(θ)+cos2(θ)=1,所以 sin ⁡ 2 ( π 2 ) + cos ⁡ 2 ( π 2 ) = 1 \sqrt{\sin^2(\dfrac{\pi}{2})+\cos^2(\dfrac{\pi}{2})}=1 sin2(2π)+cos2(2π) =1,所以 A = 1 1 = 1 \text{A}=1^1=1 A=11=1

接着,我们计算 B \text{B} B

− 49 i − ( sin ⁡ 2 θ ) 2 − ( cos ⁡ 2 θ ) 2 − 1 − 2 sin ⁡ 2 θ cos ⁡ 2 θ + 2 sin ⁡ 2 θ + 2 cos ⁡ 2 θ sin ⁡ 2 θ + cos ⁡ 2 θ + 119025 − 291 × 409 = 7 i i − [ ( sin ⁡ 2 θ ) 2 + ( cos ⁡ 2 θ ) 2 + 1 + 2 sin ⁡ 2 θ cos ⁡ 2 θ − 2 sin ⁡ 2 θ − 2 cos ⁡ 2 θ ] sin ⁡ 2 θ + cos ⁡ 2 θ + 6 \dfrac{\dfrac{\sqrt{-49}}{i}-(\sin^2\theta)^2-(\cos^2\theta)^2-1-2\sin^2\theta\cos^2\theta+2\sin^2\theta+2\cos^2\theta}{\sin^2\theta+\cos^2\theta+119025-291\times409}\\ =\dfrac{\dfrac{7i}{i}-[(\sin^2\theta)^2+(\cos^2\theta)^2+1+2\sin^2\theta\cos^2\theta-2\sin^2\theta-2\cos^2\theta]}{\sin^2\theta+\cos^2\theta+6} sin2θ+cos2θ+119025291×409i49 (sin2θ)2(cos2θ)212sin2θcos2θ+2sin2θ+2cos2θ=sin2θ+cos2θ+6i7i[(sin2θ)2+(cos2θ)2+1+2sin2θcos2θ2sin2θ2cos2θ]

由于 a 2 + b 2 + c 2 + 2 a b − 2 a − 2 b = ( a + b + c ) 2 a^2+b^2+c^2+2ab-2a-2b=(a+b+c)^2 a2+b2+c2+2ab2a2b=(a+b+c)2,得到:

7 − [ sin ⁡ 2 θ + cos ⁡ 2 θ − 1 ] 2 sin ⁡ 2 θ + cos ⁡ 2 θ + 6 \dfrac{7-[\sin^2\theta+\cos^2\theta-1]^2}{\sin^2\theta+\cos^2\theta+6} sin2θ+cos2θ+67[sin2θ+cos2θ1]2

sin ⁡ 2 θ + cos ⁡ 2 θ = 1 \sin^2\theta+\cos^2\theta=1 sin2θ+cos2θ=1 得到:

7 − [ 1 − 1 ] 2 1 + 6 = 1 \frac{7-[1-1]^2}{1+6}=1 1+67[11]2=1

综上, AB = ln ⁡ ( lim ⁡ x → ∞ ( 1 + 1 x ) x ) sin ⁡ 2 ( π 2 ) + cos ⁡ 2 ( π 2 ) × − 49 i − ( sin ⁡ 2 θ ) 2 − ( cos ⁡ 2 θ ) 2 − 1 − 2 sin ⁡ 2 θ cos ⁡ 2 θ + 2 sin ⁡ 2 θ + 2 cos ⁡ 2 θ sin ⁡ 2 θ + cos ⁡ 2 θ + 119025 − 291 × 409 = 1 × 1 = 1 \text{AB}=\ln(\lim\limits_{x\to∞}(1+\dfrac{1}{x})^x)^{\sqrt{\sin^2(\dfrac{\pi}{2})+\cos^2(\dfrac{\pi}{2})}}\times \dfrac{\dfrac{\sqrt{-49}}{i}-(\sin^2\theta)^2-(\cos^2\theta)^2-1-2\sin^2\theta\cos^2\theta+2\sin^2\theta+2\cos^2\theta}{\sin^2\theta+\cos^2\theta+119025-291\times409}=1\times1=1 AB=ln(xlim(1+x1)x)sin2(2π)+cos2(2π) ×sin2θ+cos2θ+119025291×409i49 (sin2θ)2(cos2θ)212sin2θcos2θ+2sin2θ+2cos2θ=1×1=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值