Andrew Ng机器学习
文章平均质量分 76
hui_0_
这个作者很懒,什么都没留下…
展开
-
机器学习笔记1:机器学习定义与分类
机器学习定义与分类Andrew Ng机器学习课程学习笔记1定义Arthur Samuel (1959) Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.Tom Mitchell (1998) Well...原创 2018-09-14 17:39:16 · 382 阅读 · 0 评论 -
机器学习笔记2:线性回归
机器学习笔记2:线性回归Andrew Ng机器学习课程学习笔记2线性回归参数说明: θi:parameters,参数 x:input,输入 y:output,输出 h:hypothesis,假设 m:数据数量回归方程: 一元线性的回归方程的一般格式如下,用于反应输出与输入之间的关系。hθ(x)=θ0+θ1xh_θ(x) = θ_0 + θ_1xhθ(x)...原创 2018-09-20 10:24:14 · 187 阅读 · 0 评论 -
机器学习笔记3:逻辑回归
机器学习笔记3:逻辑回归Andrew Ng机器学习课程学习笔记3逻辑回归就是分类问题,比如把邮件标示为垃圾邮件和正常邮件,判断肿瘤是良性的还是恶性的.Sigmoid function线性回归方程中,h_θ(x) 的取值y是连续的,而逻辑回归中输出则是离散的。以两个类别为例,结果消极时y的取值为0,结果积极时y的取值为1。一般来说y不可能小于0,也不会大于1。为了适应这种特点,逻辑回归的方...原创 2018-10-22 17:06:22 · 315 阅读 · 0 评论 -
机器学习笔记4:正则化(Regularization)
机器学习笔记4:正则化(Regularization)Andrew Ng机器学习课程学习笔记4过拟合与欠拟合 线性拟合时,有两种拟合效果不好的情况,分别是过拟合与欠拟合。 过拟合(overfitting),也叫高方差(variance)。主要是拟合曲线过于弯曲,虽然很多训练的数据集都在拟合曲线上,但是,对于新的测试集数据预测正确的概率不高。一般特征参数过多的时候可能会出现情况。比如用...原创 2018-10-23 14:28:05 · 224 阅读 · 0 评论