FatMouse's Speed

FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to take the data on a collection of mice and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the speeds are decreasing. 

Input

Input contains data for a bunch of mice, one mouse per line, terminated by end of file. 

The data for a particular mouse will consist of a pair of integers: the first representing its size in grams and the second representing its speed in centimeters per second. Both integers are between 1 and 10000. The data in each test case will contain information for at most 1000 mice. 

Two mice may have the same weight, the same speed, or even the same weight and speed. 

Output

Your program should output a sequence of lines of data; the first line should contain a number n; the remaining n lines should each contain a single positive integer (each one representing a mouse). If these n integers are m[1], m[2],..., m[n] then it must be the case that 

W[m[1]] < W[m[2]] < ... < W[m[n]] 

and 

S[m[1]] > S[m[2]] > ... > S[m[n]] 

In order for the answer to be correct, n should be as large as possible. 
All inequalities are strict: weights must be strictly increasing, and speeds must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one. 

Sample Input

6008 1300
6000 2100
500 2000
1000 4000
1100 3000
6000 2000
8000 1400
6000 1200
2000 1900

Sample Output

4
4
5
9
7

思路:先对所有老鼠的体重从小到大排序。然后求这个序列中的最长严格递增子序列,dp[i] 记录以 i 只老鼠作为结尾的最长合法序列的长度。

#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
using namespace std;
struct mouse
{
    int w,s,index;//分别保存了重量速度和初始角标
} m[1100];
bool cmp(mouse a,mouse b)//按照重量先从小到大排个序
{
    return a.w<b.w;
}
int main()
{
    int w,s,n,i=0,j,dp[1100],k,p[1100],max=1;//p[]用来保存路径,max注意初始化是1
    while(~scanf("%d%d",&w,&s))
    {
        i++;
        m[i].w=w,m[i].s=s;
        m[i].index=i;
        dp[i]=1;
        p[i]=-1;//初始化
    }
    k=i;
    int ans=k;
    sort(m+1,m+1+k,cmp);
    for(i=k; i>=1; i--) //反向对速度求最大上升子序列
    {
        for(j=k; j>i; j--)
        {
            if(m[i].s>m[j].s&&m[i].w<m[j].w&&dp[i]<dp[j]+1)//注意前一个指标不能相等
            {
                dp[i]=dp[j]+1;
                p[i]=j;//保存下标
            }
        }
        if(max<dp[i])
        {
            max=dp[i];
            ans=i;//保存最后的下标
        }
    }
    printf("%d\n",max);
    do//输出路径,
    {
        printf("%d\n",m[ans].index);
        ans=p[ans];
    }
    while(ans!=-1);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值