基于ICLR2023审稿分数变化的rebuttal策略研究

点击文末公众号卡片,找对地方,轻松参会

本文前提为该会议审稿过程全公开,非全公开会议rebuttal策略将在后续文章推出,敬请关注【轻松参会】。

策略:在拿到审稿分数后,基于数据与算法判断是否有戏被录用。若没戏,则迅速转投。若有戏,则依照优秀的rebuttal方式,进行科学有效的rebuttal。

好坏标准:只要实践了科学有效的rebuttal方式,不管之后是否被录用,都视作一次成功的rebuttal。

关键步骤:

1.基于数据与算法判断录用是否有戏。

2.心态管理:有则积极rebuttal,无则积极转投。

3.学习正确的rebuttal方式。

关键步骤详解:

  1. 基于数据与算法判断是否录用有戏 

由于前提为审稿过程全公开,所以默认以下数据都能拿的到:

数据:

i)上届录用率/极限提分情况/整体提分情况

ii).本届投稿量/审稿分数情况

算法:

预测乐观分数线=本届投稿量*上届录用率+上届整体提分

//ICLR2023投稿量暴涨46.7%,但是录用率仅从32.9%降到31.8%。故即使投稿量暴涨,依然预期录用率保持稳定是合理的乐观预期。需要注意,确实有可能录用率明显下降。

极限提分效果=去年提分程度最大的论文

//以ICLR2023为例,有4篇论文,均分提分了3分。

if  自己审稿分数+极限提分效果>=预测乐观分数线:

    有戏,积极rebuttal

else:

    没戏,积极转投

2.心态管理:有则积极rebuttal,无则积极转投。

心态管理非常重要。需要明确,该策略下,不管自己分数如何,都可以从容应对,长期坚持下来,一定有利于科研之路。

当作者以之后是否会被录用作为好坏评判标准时,就将主动权让位给自己不可掌握之事,很容易患得患失,心态失衡,是比较差的策略。

但是如果以,有戏就积极rebuttal,没戏则积极转投,只要严格执行策略就视作一次好的行为,则将主动权牢牢掌握在自己手上。

审稿分数低到极限提分都预期录用不了之时,积极转投显然是最佳策略。

在有戏被录用时,将注意力全部放在如何最大化提升审稿分数上,即使这次不被录用,但是有识之士显然能意识到,这样做,非常有利于长期获得更好的审稿分数。此可谓不计一城一池之得失,志在长期最优解。

3.学习正确的rebuttal方式

向产生了优秀提分效果的作者学习。

ICLR2023初始投稿量4881份,截至22.12.1,共有862撤稿,还有4019份有效投稿,其中1752份论文分数提高,2037份论文分数没有变化,230份论文分数降低。

其中涨分效果最好的有四篇,均分提升了3分。

《Breaking Correlation Shift via Conditional Invariant Regularizer》在一开始只有5533,即没有一位审稿人认为很出彩的情况下,提升到了8686。

OpenReview链接:

https://openreview.net/forum?id=-jTaz3CMk72

《Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Approach》一开始为853,即审稿人意见差异很大,也最后成功实现了888。

OpenReview链接:

https://openreview.net/forum?id=dLAYGdKTi2

这些都是非常好的学习材料,值得留意关注。

大家可访问下面这个链接,快速查看是那些论文提分效果最好:

https://guoqiangwei.xyz/iclr2023_stats/iclr2023_submissions.html

 

公众号【轻松参会】后台回复会议名称可进对应会议交流群。公众号文章会发布近期截稿会议、转投会议推荐、录用率趋势、录用分数分析等重要信息,并会不定期分享计算机科研相关的实用资料。
### ICLR 2023 指纹识别研究概述 ICLR(国际学习表征会议)作为机器学习领域的重要学术活动,在2023年的会议上确实涵盖了多种生物特征识别技术的研究进展,其中包括指纹识别方向的工作。然而,具体到指纹识别这一细分领域,ICLR更倾向于关注其背后的通用技术和理论框架的发展。 #### 图神经网络与指纹匹配 一项值得注意的研究探讨了如何利用图神经网络(GNNs)改进指纹匹配算法的效果[^1]。这项工作借鉴了Weisfeiler-Lehman(WL)检验的思想,这是一种高效地区分图形结构差异的技术。研究人员发现WL测试中的节点标签聚合过程与GNN的信息传递机制存在相似之处,因此尝试构建基于GNN的新型指纹表示模型。这类模型不仅能够捕捉局部细节特征,还能有效地建模全局拓扑关系,从而提高了指纹对比任务的表现。 #### 自监督学习增强指纹质量评估 另一篇相关文章聚焦于通过自监督卷积神经网络(CNN)提升指纹图像的质量评价能力[^2]。该研究提出了一个鲁棒性强且无需大量标注样本即可完成训练的学习框架。此方法特别适用于野外采集条件下获取的低质或部分损坏的指纹图片预处理环节,有助于后续的身份验证流程更加稳定可靠。 ```python import torch.nn as nn class FingerprintQualityAssessment(nn.Module): def __init__(self): super(FingerprintQualityAssessment, self).__init__() # Define layers of the CNN architecture here def forward(self, x): # Implement forward pass logic using defined layers return output ``` 尽管上述两项成果并非直接针对传统意义上的指纹识别系统优化,但从长远来看,它们所提供的创新思路和技术手段无疑将推动整个行业向着更高层次发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SiameseAge

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值