真正理解最小二乘法(更新中)

真正理解最小二乘法(更新中)

最小二乘法是一种拟合方法,用于对数据进行线性拟合。

例如,我们有以下房价数据,size列为在售房屋的面积(平方米),price为房屋的总价(千元)。

sizeprice
603581.583
612849.362
622911.82
632946.295
643731.809
19610248.65
19710702.55
19810100.39
1999964.464
20010614.15

请添加图片描述

从图中可以看出,很显然,sizeprice是线性正相关的,我们希望得到一个线性函数 y i = m x i + b y_i=mx_i+b yi=mxi+b 帮助我们量化考察房屋面积和其售价的关系。首先,我们需要制定一个标准,来考察我们得到的函数拟合结果的优劣。

请添加图片描述

如下图,对于一个点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),如果拟合的越好,则点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)到直线 y = m x + b y=mx+b y=mx+b的距离也就越小,我们使用真实值( y 0 y_0 y0)与预测值( m x 0 + b mx_0 + b mx0+b)差的在平方 ( y − m x 0 − b ) 2 (y - mx_0 - b)^2 (ymx0b)2考察函数 y = m x + b y=mx+b y=mx+b 拟合结果对点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的好坏,使用所有点 ( x i , y i ) , i = 1 , 2 , … , n (x_i,y_i),i=1,2,\dots,n (xi,yi),i=1,2,,n真实值( y 0 y_0 y0)与预测值( m x 0 + b mx_0 + b mx0+b)差的平方之和 E = ∑ i = 1 n ( y i − m x i − b ) 2 E=\sum_{i=1}^{n}(y_i-mx_i-b)^2 E=i=1n(yimxib)2考察拟合结果对所有数据的好坏。于是,“最好的直线”可以定义为使得误差 E = ∑ i = 1 n ( y i − m x i − b ) 2 E=\sum_{i=1}^{n}(y_i-mx_i-b)^2 E=i=1n(yimxib)2最小的直线 y = m x + b y=mx+b y=mx+b。问题也被抽象化为求得参数 m , b m,b m,b,使得 min ⁡ ( E ) \min(E) min(E)

数据: ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_1,y_1), (x_2,y_2),\dots, (x_n,y_n) (x1,y1),(x2,y2),,(xn,yn)

待拟合直线方程: y i = m x i + b y_i=mx_i+b yi=mxi+b

找到 ( m , b ) (m,b) (m,b)以最小化误差方程: E = ∑ i = 1 n ( y i − m x i − b ) 2 E=\sum_{i=1}^{n}(y_i-mx_i-b)^2 E=i=1n(yimxib)2

上述用矩阵表示即为如下:
Y = [ y 1 ⋮ y n ]        X = [ x 1 1 ⋮ ⋮ x n 1 ]        B = [ m b ] Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \ \ \ \ \ \ X= \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \ \ \ \ \ \ B = \begin{bmatrix} m \\ b \end{bmatrix} Y=y1yn      X=x1xn11      B=[mb]
E = ∣ ∣ Y − X B ∣ ∣ 2 = ( Y − X B ) T ( Y − X B ) = Y T Y − 2 ( X B ) T Y + ( X B ) T ( X B ) E = ||Y-XB||^2 =(Y-XB)^T(Y-XB) \\ = Y^TY-2(XB)^TY+(XB)^T(XB) E=YXB2=(YXB)T(YXB)=YTY2(XB)TY+(XB)T(XB)

请添加图片描述

求极值常用的一种方式就是求导(对 B B B 求导就去掉 B T B^T BT),令:
KaTeX parse error: Undefined control sequence: \derivative at position 2: \̲d̲e̲r̲i̲v̲a̲t̲i̲v̲e̲{E}{B} = 2X^T(X…
(16条消息) 矩阵求导、几种重要的矩阵及常用的矩阵求导公式_Norstc的博客-CSDN博客_矩阵求导

如果 X T X X^TX XTX 可逆,有
X T X B = X T Y B = ( X T X ) − 1 X T Y X^TXB = X^TY \\ B = (X^TX)^{-1}X^TY XTXB=XTYB=(XTX)1XTY
结果如下:

请添加图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值