LEARNING WITH NOISY LABELS REVISITED: A STUDY USING REAL-WORLD HUMAN ANNOTATIONS

在这里插入图片描述
理想的数据集D,其中x,y都符合理想的分布,但是现实中的数据集,一般存在一定的噪声,存在一定的标签错误,定义这个数据集为 D ~ \tilde{D} D~,数据为x, y ~ \tilde{y} y~
这两个数据集之前存在一个转换矩阵 T ( X ) T(X) T(X) T i , j ( X ) T_{i,j}(X) Ti,j(X)表示在数据集X下,标签为i的数据被错误分配成标签j的概率。

只与类有关的噪声标签

在这里插入图片描述
第一种假设是类相关噪声,在这种情况下我们不考虑数据集特征的影响,我们假设数据集的特征和标签噪声是独立的。

第一种是对称T,即转移到其他类的概率是 ϵ \epsilon ϵ,这样保留在原始标签的概率是 1 − ϵ 1-\epsilon 1ϵ,转移到其他任意一个标签的概率是 ϵ K − 1 \frac{\epsilon}{K-1} K1ϵ

在这里插入图片描述

第二种是非对称T,有两种假设:

  1. 标签i被错误标记成(i+1)%K的概率为 ϵ \epsilon ϵ
  2. 标签对 ( i c , j c ) (i_c, j_c) (ic,jc)互相错误分配的概率为 ϵ \epsilon ϵ

与实例有关的噪声标签

在这里插入图片描述

那明显,只与类有关的噪声标签,很大程度上脱离了现实情况,一张图片,有可能很容易分辨,那么就会以接近100%的概率被正确分类,但是如果比较模糊,ambiguous,那被正确分类的概率就会小一点。因此转移矩阵T也应该与X有关。

有一些技术可以合成与实例相关的标签噪声,例如多项式边缘递减标签噪声(Zhang等人;2021b),其中靠近决策边界的实例更容易被错误标记,部分依赖的标签噪声(Xia等,2020b),其中不同部分的特征可能贡献不同的噪声转移矩阵,以及组依赖的标签噪声(Wang等,2021a;Zhu等人,2021a),其中不同的亚种群可能具有不同的噪声率。

在这里插入图片描述
人类标注数据集,通过Amazon Mechanical Turk进行标注。分别是CIFAR-10和CIFAR-100,标注完记为CIFAR10N和CIFAR100N。

CIFAR-10N

对于CIFAR10而言,每一张图片有1个原始标签,和3个人类标注标签。作者定义了五种噪声标签数据集:

  • Aggregate: 聚合三个人工标注结果,选取最多的作为标签,如果三个各不相同,随机选择
  • Random i: 选择每张图片的第i次提交结果, i ∈ { 1 , 2 , 3 } i \in \{1,2,3\} i{1,2,3}
  • Worst:只选择标错的标签,有多个标错的就从标错的里面随机选择。(只选择错的)

最终结果,有60.27%的完全无异议,aggregate方法存在9.03%的噪声。
在这里插入图片描述

CIFAR-100N

直接看结果
在这里插入图片描述

观察结果

1. 不平衡标注

在这里插入图片描述

有的标签被错误分配得多,有的标签少。

2. 嘈杂的标签翻转到相似的特征

就算被错误标记,也是在相似的特征图片之间错误分类,错误的结果不会偏离太多,例如“蛇”类数据的错误标签,一般不会多于4个,大约20%的蛇和蠕虫被相互错误分类。

在这里插入图片描述

3. 噪声转移矩阵的模式

在这里插入图片描述
一样的结果,某些类之间的错误标记概率更高,真实世界的噪声标签比合成噪声标签复杂得多。

4. 噪声标签是好是坏?

在这里插入图片描述
一张图片可能不止一个标签,例如一个人抱着一条鱼,官方标注可能是鱼,但是人类错误地标注成人其实也是正确的,这是一个值得探讨的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

volcanical

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值