长短期记忆网络(LSTM)算法详解

长短期记忆网络(LSTM)算法详解

简介

长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),旨在解决传统RNN的梯度消失和梯度爆炸问题。LSTM通过引入门控机制,有效地捕捉和利用长时间跨度的依赖关系。LSTM广泛应用于自然语言处理、时间序列预测、语音识别等领域。

LSTM的基本结构

LSTM的基本单元由一个记忆细胞(Cell)、三个门(输入门、遗忘门和输出门)和一个隐藏状态(Hidden State)组成。通过这些门控机制,LSTM能够选择性地记住或忘记信息,从而在长时间跨度上保持信息的流动。

数学公式

对于一个序列输入 ( x = (x_1, x_2, \ldots, x_T) ),LSTM在每个时间步 ( t ) 的计算公式如下:

  1. 遗忘门(Forget Gate)

[ f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ]

  1. 输入门(Input Gate)

[ i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) ]

  1. 候选记忆细胞(Candidate Cell State)

[ \tilde{C}t = \tanh(W_C \cdot [h{t-1}, x_t] + b_C) ]

  1. 更新记忆细胞(Update Cell State)

[ C_t = f_t * C_{t-1} + i_t * \tilde{C}_t ]

  1. 输出门(Output Gate)

[ o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ]

  1. 隐藏状态(Hidden State)

[ h_t = o_t * \tanh(C_t) ]

其中:

  • ( f_t ) 是遗忘门的输出,控制遗忘多少过去的信息。
  • ( i_t ) 是输入门的输出,控制有多少新的信息被写入记忆细胞。
  • ( \tilde{C}_t ) 是候选记忆细胞状态,生成新的候选记忆。
  • ( C_t ) 是当前时间步的记忆细胞状态。
  • ( o_t ) 是输出门的输出,控制记忆细胞状态如何影响当前时间步的隐藏状态。
  • ( h_t ) 是当前时间步的隐藏状态。
  • ( W_f, W_i, W_C, W_o ) 是权重矩阵,( b_f, b_i, b_C, b_o ) 是偏置项。
  • ( \sigma ) 是Sigmoid激活函数&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城十三

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值