长短期记忆网络(LSTM)算法详解
简介
长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),旨在解决传统RNN的梯度消失和梯度爆炸问题。LSTM通过引入门控机制,有效地捕捉和利用长时间跨度的依赖关系。LSTM广泛应用于自然语言处理、时间序列预测、语音识别等领域。
LSTM的基本结构
LSTM的基本单元由一个记忆细胞(Cell)、三个门(输入门、遗忘门和输出门)和一个隐藏状态(Hidden State)组成。通过这些门控机制,LSTM能够选择性地记住或忘记信息,从而在长时间跨度上保持信息的流动。
数学公式
对于一个序列输入 ( x = (x_1, x_2, \ldots, x_T) ),LSTM在每个时间步 ( t ) 的计算公式如下:
- 遗忘门(Forget Gate):
[ f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ]
- 输入门(Input Gate):
[ i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) ]
- 候选记忆细胞(Candidate Cell State):
[ \tilde{C}t = \tanh(W_C \cdot [h{t-1}, x_t] + b_C) ]
- 更新记忆细胞(Update Cell State):
[ C_t = f_t * C_{t-1} + i_t * \tilde{C}_t ]
- 输出门(Output Gate):
[ o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ]
- 隐藏状态(Hidden State):
[ h_t = o_t * \tanh(C_t) ]
其中:
- ( f_t ) 是遗忘门的输出,控制遗忘多少过去的信息。
- ( i_t ) 是输入门的输出,控制有多少新的信息被写入记忆细胞。
- ( \tilde{C}_t ) 是候选记忆细胞状态,生成新的候选记忆。
- ( C_t ) 是当前时间步的记忆细胞状态。
- ( o_t ) 是输出门的输出,控制记忆细胞状态如何影响当前时间步的隐藏状态。
- ( h_t ) 是当前时间步的隐藏状态。
- ( W_f, W_i, W_C, W_o ) 是权重矩阵,( b_f, b_i, b_C, b_o ) 是偏置项。
- ( \sigma ) 是Sigmoid激活函数&