Halcon实例系列教程-应用范围-安全系统-卡尔曼滤波器应用一例xing.hdev

卡尔曼滤波器的一个应用。

create_bg_esti (ImageZoomed, 0.7, 0.7, 'fixed', 0.001, 0.03, 'on', 8.0, 10, 3.25, 15, BgEstiHandle) 
* create_bg_esti(InitializeImage : : Syspar1, Syspar2, GainMode, Gain1, Gain2, AdaptMode, 
*MinDiff, StatNum, ConfidenceC, TimeC : BgEstiHandle)  
*InitializeImage用作背景图像的初始预测。对于一个很好的预测,没有移动物体的观察场景的图像应该在
*InitializeImage中传递。这样前景适应率就可以保持在较低水平。如果没有空的场景图像可用,则可以使用均
*匀的灰度图像代替。在这种情况下,前景图像的自适应率必须提高,因为最初的大部分图像将被检测为前景。初
*始化映像必须是字节类型或实数类型。由于处理单通道图像,必须为每个通道创建数据集。InitializeImage的
*大小和区域决定了使用该数据集执行的所有背景估计(run_bg_esti)的大小和区域。
    
    read_image (ActualImage, 'xing/xing' + (I$'03'))
    zoom_image_factor (ActualImage, ImageZoomed, 0.5, 0.5, 'constant')
    run_bg_esti (ImageZoomed, ForegroundRegion, BgEstiHandle)
*run_bg_esti(PresentImage : ForegroundRegion : BgEstiHandle : )
*run_bg_esti对每个像素使用卡尔曼滤波器来调整存储在BgEsti数据集中的背景图像,并返回前景的一个区域
*(检测到的移动物体)。对于每个像素,使用当前数据集及其存储的背景图像和当前图像(PresentImage)的值
*计算其灰度值的估计。通过与阈值(固定或自适应,参见create_bg_esti)的比较,像素被分类为前景或背
*景。背景估计只处理单通道图像。因此,背景必须分别适
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hushenming3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值