1、sklearn中Polynomialfeatures的用法最直观说明

使用sklearn.preprocessing.PolynomialFeatures来进行特征的构造。

它是使用多项式的方法来进行的,如果有a,b两个特征,那么它的2次多项式为(1,a,b,a^2,ab, b^2),这个多项式的形式是使用poly的效果。

PolynomialFeatures有三个参数

degree:控制多项式的度

interaction_only: 默认为False,如果指定为True,那么就不会有特征自己和自己结合的项,上面的二次项中没有a^2和b^2。

include_bias:默认为True。如果为True的话,那么就会有上面的 1那一项。
例子1,interaction_only为默认的False时
c=[[5,10]]    #c=[[a,b]],这里要注意a的shape,如果是list形式,则将a.shape=-1,1
pl=PolynomialFeatures()
b=pl.fit_transform(c)
b
输出: array([[  1.,   5.,  10.,  25.,  50., 100.]])    #符合(1,a,b,a^2,ab, b^2)

例子2,interaction_only=True时
c=[[5,10]]
pl=PolynomialFeatures(interaction_only=True)
b=pl.fit_transform(c)
b
输出: array([[ 1.,  5., 10., 50.]])    #输出中不包含a^2和b^2项
在探索数据挖掘和机器学习时,理解如何使用Python进行二维函数的高次拟合是非常关键的。为了处理非线性数据并评估模型性能,我们可以利用Scipy和Sklearn这两个强大的库。首先,通过导入必要的库,包括matplotlib.pyplot用于绘制图表,numpy用于数值计算,scipy进行科学计算,以及sklearn用于机器学习建模。 参考资源链接:[Python实现二维函数高次拟合详解](https://wenku.csdn.net/doc/645ca76759284630339a3eb6?spm=1055.2569.3001.10343) 数据准备是整个过程的第一步。这涉及到导入数据集,进行预处理,比如检查和处理缺失值,数据转换等。Scipy和Sklearn提供了大量的工具来简化这一过程。 在数据预处理之后,我们将使用sklearn.preprocessing中的PolynomialFeatures类来创建多项式特征,这将允许我们通过增加特征的维度来进行高次拟合。例如,使用`PolynomialFeatures(degree=2)`可以将一维的特征向量转换为包含原始特征、其平方值以及其他交叉项的高维特征空间。 接下来,可以构建一个sklearn.pipeline.Pipeline对象,这样可以将特征转换(PolynomialFeatures)和模型训练(例如LinearRegression)整合为一个步骤。使用`fit`方法来训练模型,并通过`predict`方法来预测新的数据点。为了评估模型性能,可以使用`score`方法来获取模型的决定系数(R^2 score)或其他指标。 后,为了直观地展示拟合效果,可以使用matplotlib绘制原始数据点和拟合曲线。这不仅可以帮助我们判断模型是否捕捉到了数据的非线性趋势,还可以用于向他人展示模型性能。 如果你想要深入了解这些步骤并看到具体的代码示例,我推荐你阅读《Python实现二维函数高次拟合详解》。这篇教程详细讲解了整个过程,并包含了代码示例,可以帮助你更好地理解如何在Python中进行高次拟合。 参考资源链接:[Python实现二维函数高次拟合详解](https://wenku.csdn.net/doc/645ca76759284630339a3eb6?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hushenming3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值