马氏距离(Mahalanobis Distance)介绍与实例

本文深入探讨了马氏距离的概念,解释了为何在处理具有不同方差和相关性的数据时,它比欧式距离更具优势。通过一个具体的Python sklearn实现的异常检测例子,阐述了如何利用马氏距离来识别分布外的样本。
摘要由CSDN通过智能技术生成

本文介绍马氏距离(Mahalanobis Distance),通过本文,你将了解到马氏距离的含义、马氏距离与欧式距离的比较以及一个通过马氏距离进行异常检测的例子(基于Python的sklearn包)。

目的

计算两个样本间的距离时,需要考虑样本所在的分布造成的影响。影响包括两个方面:

  • 不同维度上的方差不同,进而不同维度在计算距离时的重要性不同;
  • 不同维度间可能存在相关性,干扰距离计算。

当数据的分布已知时,我们通常会用马氏距离代替欧氏距离,或者选择另一种方法:对数据进行转换(如PCA)。

定义

  1. 度量样本到样本分布间的距离
    d = ( x ⃗ − μ ⃗ ) T S − 1 ( x ⃗ − μ ⃗ ) d = \sqrt{(\vec x - \vec \mu)^T S^{-1} (\vec x - \vec \mu)} d=(x μ
  • 23
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值