def embedding_layer(x, vocab_size, embedding_size):
"""
:param x: 输入tensor
:param vocab_size: 需要embedding的value的总量
:param embedding_size: embdding后tensor的axis=-1的维度
:return: embedding后的tensor
"""
# 创建一个n * k的默认值矩阵
embedding_w = tf.get_variable('embedding_w', [vocab_size, embedding_size
Tensorflow实现Embedding Layer
最新推荐文章于 2021-11-23 10:27:01 发布
该博客介绍了如何利用Tensorflow构建并训练Embedding Layer,强调在模型训练过程中,初始的n*k维度的embedding矩阵会随训练迭代不断优化。
摘要由CSDN通过智能技术生成