Tensorflow实现Embedding Layer

该博客介绍了如何利用Tensorflow构建并训练Embedding Layer,强调在模型训练过程中,初始的n*k维度的embedding矩阵会随训练迭代不断优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

def embedding_layer(x, vocab_size, embedding_size):
	"""
	:param x: 输入tensor
	:param vocab_size: 需要embedding的value的总量
	:param embedding_size: embdding后tensor的axis=-1的维度
	:return: embedding后的tensor
	"""
	# 创建一个n * k的默认值矩阵
	embedding_w = tf.get_variable('embedding_w', [vocab_size, embedding_size
### Embedding Layer 的概念 Embedding 层是一种特殊的神经网络层,在深度学习框架中广泛应用于处理离散输入数据,特别是自然语言处理 (NLP) 和推荐系统领域。该层的主要功能是将高维稀疏向量映射到低维密集向量表示。 通过这种方式,Embedding 层能够捕捉特征之间的语义关系并减少维度灾难的影响。对于文本数据而言,这意味着可以更好地理解词语间的相似性和上下文关联[^3]。 ### 使用场景与优势 - **降维**:相比于独热编码(One-Hot Encoding),嵌入表示显著降低了参数数量。 - **捕获语义信息**:相邻位置上的词往往具有更接近的意义。 - **加速收敛速度**:由于引入了连续空间中的梯度传播机制,使得优化过程更加高效稳定。 ### 实现方式 以下是 Python 中基于 TensorFlow/Keras 库创建一个简单的 embedding layer 并应用其于序列化整数列表的例子: ```python import tensorflow as tf from tensorflow.keras.layers import Embedding, Flatten, Dense from tensorflow.keras.models import Sequential vocab_size = 1000 # 假设词汇表大小为1000 embedding_dim = 64 # 设置嵌入维度为64 model = Sequential([ Embedding(input_dim=vocab_size, output_dim=embedding_dim), Flatten(), Dense(units=1) ]) input_sequence = [[7], [85]] # 输入两个单词ID组成的batch output_embedding = model.predict(input_sequence) print(output_embedding.shape) # 输出形状应为(batch_size, embedding_dim) ``` 上述代码片段展示了如何定义一个包含单个 `Embedding` 层的 Keras 模型,并对其进行了简单预测操作来获取对应 ID 的嵌入向量表示[^1].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值