最简单 安全 高效的 nvidia 驱动 pytorch tensorflow keras cuda安装

注:
windows务必使用管理员权限
这里使用pyenv + anaconda 管理
ref:
https://blog.csdn.net/huuuuuuuu/article/details/88530215
https://blog.csdn.net/huuuuuuuu/article/details/84109295

1. NVIDIA驱动

如果已经有了,或者版本不用更新,可以跳过该步骤

  1. 增加源,并更新
    sudo add-apt-repository ppa:graphics-drivers/ppa
    sudo apt update
    
  2. 查看设备支持的驱动版本
    sudo ubuntu-drivers devices
    
  3. 直接安装想要的版本(如果已经有则会更新)
    sudo apt install nvidia-410
    
  4. 重启
    sudo reboot
    

2. pyenv

(windows跳过此部分)

  1. 安装
    mac:
    (ref https://github.com/pyenv/pyenv#homebrew-on-macos)

     $ brew update
     $ brew install pyenv
    

    linux:
    (ref https://github.com/pyenv/pyenv-installer)

    $ curl -L https://github.com/pyenv/pyenv-installer/raw/master/bin/pyenv-installer | bash
    
  2. 将此内容插入.bashrc末尾

    export PATH="~/.pyenv/bin:$PATH"
    eval "$(pyenv init -)"
    eval "$(pyenv virtualenv-init -)"
    
    $ vi ~/.bashrc
    $ pyenv update
    

3. anaconda

  1. pyenv安装anaconda

    $ pyenv install anaconda3-2018.12
    
  2. 切入ananconda环境

    $ pyenv global anaconda3-2018.12
    
  3. 更新anaconda包

    (anaconda3-2018.12)$ conda update conda
    (anaconda3-2018.12)$ conda update anaconda
    (anaconda3-2018.12)$ conda update python
    (anaconda3-2018.12)$ conda update --all
    
  4. 创建conda环境

    (anaconda3-2018.12)$ conda create -n envname python=3.6
    
  5. 激活并进入

    (anaconda3-2018.12)$ conda activate envname
    

cuda

  1. 安装,不用指定版本,会自己安装你合适的版本

    (envname)(anaconda3-2018.12)$ conda install -c anaconda cudatoolkit
    (envname)(anaconda3-2018.12)$ conda install -c anaconda cudnn
    

框架

安装完pyenv和anaconda后,框架安装最好参照官网

  1. tensorflow
    gpu版:

    (envname)(anaconda3-2018.12)$ conda install -c aaronzs tensorflow-gpu
    
  2. pytorch
    进入你安装好的anaconda环境后,使用conda list查看你的cudatoolkit版本,然后去官网选择对应版本下载
    gpu版:

    (envname)(anaconda3-2018.12)$ conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  3. keras
    gpu版:

    (envname)(anaconda3-2018.12)$ conda install keras-gpu
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值