注:
windows务必使用管理员权限
这里使用pyenv + anaconda 管理
ref:
https://blog.csdn.net/huuuuuuuu/article/details/88530215
https://blog.csdn.net/huuuuuuuu/article/details/84109295
1. NVIDIA驱动
如果已经有了,或者版本不用更新,可以跳过该步骤
- 增加源,并更新
sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update
- 查看设备支持的驱动版本
sudo ubuntu-drivers devices
- 直接安装想要的版本(如果已经有则会更新)
sudo apt install nvidia-410
- 重启
sudo reboot
2. pyenv
(windows跳过此部分)
-
安装
mac:
(ref https://github.com/pyenv/pyenv#homebrew-on-macos)$ brew update $ brew install pyenv
linux:
(ref https://github.com/pyenv/pyenv-installer)$ curl -L https://github.com/pyenv/pyenv-installer/raw/master/bin/pyenv-installer | bash
-
将此内容插入
.bashrc
末尾export PATH="~/.pyenv/bin:$PATH" eval "$(pyenv init -)" eval "$(pyenv virtualenv-init -)"
$ vi ~/.bashrc $ pyenv update
3. anaconda
-
pyenv安装anaconda
$ pyenv install anaconda3-2018.12
-
切入ananconda环境
$ pyenv global anaconda3-2018.12
-
更新anaconda包
(anaconda3-2018.12)$ conda update conda (anaconda3-2018.12)$ conda update anaconda (anaconda3-2018.12)$ conda update python (anaconda3-2018.12)$ conda update --all
-
创建conda环境
(anaconda3-2018.12)$ conda create -n envname python=3.6
-
激活并进入
(anaconda3-2018.12)$ conda activate envname
cuda
-
安装,不用指定版本,会自己安装你合适的版本
(envname)(anaconda3-2018.12)$ conda install -c anaconda cudatoolkit (envname)(anaconda3-2018.12)$ conda install -c anaconda cudnn
框架
安装完pyenv和anaconda后,框架安装最好参照官网
-
tensorflow
gpu版:(envname)(anaconda3-2018.12)$ conda install -c aaronzs tensorflow-gpu
-
pytorch
进入你安装好的anaconda环境后,使用conda list
查看你的cudatoolkit版本,然后去官网选择对应版本下载
gpu版:(envname)(anaconda3-2018.12)$ conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
-
keras
gpu版:(envname)(anaconda3-2018.12)$ conda install keras-gpu