Generative Adversarial Net 生成对抗模型

资料搜集 论文+代码:

1. 纹理合成 Markovian Generative Adversarial Networks (MGANs) for training generative neural networks for efficient texture synthesis
简介:Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks Chuan Li, Michael Wand This paper proposes Markovian Generative Adversarial Networks (MGANs), a method for training generative neural networks for efficient texture synthesis. While deep neural network approaches have recently demonstrated remarkable results in terms of synthesis quality, they still come at considerable computational costs (minutes of run-time for low-res images)

dependencies: caffe
github:https://github.com/chuanli11/MGANs

2. Generative Adversarial Nets :
生成对抗网络的提出之作。
dependencies: Pylearn2
github:http://www.github.com/goodfeli/adversarial

3. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

简介:2016年ICLR,文章基于GAN提出一个中无监督的CNN网络,取名为DCGANs,采取一系列的约束使得训练模型更加稳定和可控。利用训练得到的判别网络D,可以实现image分类任务,允许操作语义的特性生成样本(allowing for easymanipulation of many semantic qualities of generated samples.)

dependencies: TORCH Chainer TensorFlow 等
github: https://github.com/Newmu/dcgan_code

4. Generative moment matching networks

github:https://github.com/yujiali/gmmn

5. Eyescream: Deep Generative Image Models (Laplacian Pyramid of Adversarial Networks)

github:https://github.com/facebook/eyescream
6. Generative Image Modeling using Style and Structure Adversarial Networks

7. Generating Images from Captions with Attention
github:https://github.com/emansim/text2image

8. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
githubhttps://github.com/openai/InfoGAN

将信息论引入了GAN中,出发点是,既然 GAN 的自由度是由于仅有一个 noise z,而无法控制 GAN 如何利用这个 z。那么我们就尽量去想办法在 “如何利用 z” 上做文章。于是将 z 做了拆解,认为 GAN 中生成模型(G)应该包含的 “先验” 分成两种: (1)不能再做压缩的 noise z;(2)和可解释地、有隐含意义的一组隐变量 c_1, c_2, …, c_L,简写为 c ,利用了互信息的建模方式,即 c 应该和生成模型 (G)基于 z 和 c 生成的图片,即 G ( z,c ),高度相关 —— 互信息大。其次,他们利用 c 的天然特性,控制 c 的维度,使得 infoGAN 能控制生成的图片在某一个特定语义维度的变化

博客:

1.http://mp.weixin.qq.com/s?__biz=MzI1NTE4NTUwOQ==&mid=2650325352&idx=1&sn=90fb15cee44fa7175a804418259d352e&scene=1&srcid=0829SajiSHPncSQ6mMpGfVJ0#wechat_redirect

2.http://m.blog.csdn.net/article/details?id=52338052

3.http://blog.csdn.net/solomon1558/article/details/52338052

4.https://zhuanlan.zhihu.com/p/21341440

5.https://zhuanlan.zhihu.com/p/20924929

6.http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&mid=2651985602&idx=1&sn=80482a460704f300efe914e07acdc39e&scene=0#wechat_redirect

7.http://it.sohu.com/20160814/n464137514.shtml

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
"Feature Statistics Mixing Regularization for Generative Adversarial Networks"这篇论文提出了一种新的生成对抗网络(GAN)的正则化方法,以提高GAN的训练稳定性和生成结果的质量。其模型由以下几个部分组成: 1. 生成器(Generator):利用输入的随机噪声生成图像。 2. 判别器(Discriminator):对生成生成的图像与真实图像进行分类,以判断图像的真伪。 3. 特征统计量混合正则化(Feature Statistics Mixing Regularization):在生成器和判别器之间引入一种正则化方法,以提高生成器的效果和判别器的鲁棒性。该正则化方法主要涉及到特征统计量(feature statistics)的混合,通过将生成器和判别器中的特征统计量相互混合,来减小它们之间的差异,从而增强网络的鲁棒性和稳定性。 4. 损失函数(Loss Function):利用生成器和判别器的输出计算损失函数,以衡量生成器的效果和判别器的鲁棒性。其中,生成器的损失函数包括生成器输出的图像与真实图像之间的差异(通过像素级别的L1或L2距离来度量),以及生成器输出的图像被判别器判定为真实图像的程度。判别器的损失函数包括判别器输出的图像被正确分类的程度,以及判别器对生成器输出的图像的分类结果。 综上所述,"Feature Statistics Mixing Regularization for Generative Adversarial Networks"的模型包括生成器、判别器、特征统计量混合正则化和损失函数等部分,以提高GAN的训练稳定性和生成结果的质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值