群晖(Synology)更换硬盘时间和精神双重折磨的教训

话说玩磁盘阵列的最后结果就是时间上负担不起,并且还被嫌弃。

在磁盘都到位后下一步就是要选择冗余类型了,对大部分人来说使用群晖自己提供的就好了,通常是 SHR。

什么是 SHR

Synology Hybrid RAID(SHR)是 Synology 的自动 RAID 管理系统。 SHR 可让用户创建具有优化容量和性能的灵活存储解决方案。

SHR 基于 Linux RAID 管理系统,旨在使存储部署比传统 RAID 系统更快,更轻松。这使得它特别适合 RAID 技术的新用户。

SHR的优点:在于方便不熟悉磁盘阵列的玩家,傻瓜简单式的帮你组好磁盘阵列,而且还能合理利用容量大小不一的硬盘,减少浪费,Raid是按照最小的硬盘算,而SHR则可以合理利用减少浪费,智能 Raid 推荐使用。

SHR 1 还是 SHR 2

简单来说就是 SHR 1 能够对比 SHR 2 提供更多的容量,但是只能允许 1 块硬盘出现问题。

SHR-2:SHR-2的原理和SHR的原理是一致的,唯一的区别就是SHR-2只能有2 块硬盘冗余,而SHR只能有1 块硬盘冗余。

这次我们更换硬盘出现的问题就在这里,因为我们的 NAS 是 8 盘位的,但是我们选择了 SHR-1,那么在更换硬盘的时候只能允许 1 块硬盘出现问题。

但是好坏不好坏,在换掉第一块硬盘的时候还没啥问题的。在第一块硬盘更换扩容完成后,我们开始尝试更换第二块硬盘。

这个时候出现了郁闷的事情了,第一块硬盘提示出现坏道,甚至 I/O 错误,但是第二块硬盘已经开始进行扩容和校验了。

结果我们等了 2 周时间,整个 NAS 没有任何进展和动静。

最后我们的解决方案还是重做整列,把出现问题的新硬盘给换下来。

这个时候出现了数据丢失,好在我们对重要数据有了 2 次云备份,同时磁带也备份了一次,丢的数据大部分是一些电影数据,只能说是丢了就丢了吧。

有点遗憾,但最重要的照片和文件都没有丢。

同时 2 周 NAS 用不了,还跑来跑去的被嫌弃说这网盘咋了。

总结

如果你的群晖 NAS 超过了 4 个盘位,并且你的硬盘大小都不一样,无脑选 SHR-2,不要为了多出来的那几个 T 而放弃安全性。

在更换硬盘的时候,是最容易出问题的时候,如果出现了 2 块硬盘出了问题,但你选择的阵列又是 SHR-1,这恢复和折腾的时间遥遥无期。

选择 SHR-2 给了更好的冗余度,哪怕是我们这种极端情况也能够比较好的恢复数据。

我们是好在有 2 次云备份和磁带,才没有丢失太多重要的东西,但还是丢了不少电影等。

2023-12-13_16-45-25

上面的图片是我们在重做整列后还在从磁带和云平台上拷贝数据回来。

在扩容之前,把重要数据备份一次,这真的很重要,不要偷懒,要不然哭都没得哭。

UPS 真的需要,如果在修复存储池的时候掉电,整个修复过程重来算轻的,搞不好重做阵列。

群晖(Synology)更换硬盘时间和精神双重折磨的教训 - 系统容器 - iSharkFly

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HoneyMoose

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值