原创作品,转载时请务必以超链接形式标明文章原始出处: http://www.dapalm.com/?p=143,作者:大数据,怕了么?
目录
从TensorRT1到TensorRT4一路跟过来,现在支持也越来越完善,NVIDIA的尿性就是不开源,坑不少,作为一个Inference库,确实为部署网络带来方便。下面从下面几个方面梳理总结一下:
- 多种模型导入
- 支持层
- 自定义层
- UFF格式及转换
多种模型导入
- Caffe
caffemodel目前支持最完整
- Onnx
Onnx目前不支持自定义层
- TensorFlow
TensorFlow的模型需要先导出frozen graph,在转换成uff格式
支持层
TRT实现了22中层接口,Caffe和TensorFlow支持的层都是通过集成这些接口实现,具体每种模型支持哪些具体的层和参数,并没有很明确的支持,只能通过代码去试验。
- Convolution
:3D,with or without bias
- Full_Connected
- Activation
: ReLu, Sigmoid,Tanh
- Pooling
:Max, Average, Max_Average_blend
- LRN
- Scale
- Softmax
- Deconvolution</