TensorRT 4 基本介绍及TensorFlow模型转化Uff格式导入(二)

本文介绍了TensorRT 4的模型导入,包括Caffe、Onnx和TensorFlow的支持,详细列出了TRT支持的层,并讨论了如何创建自定义插件以支持TensorFlow和Caffe模型的自定义层。此外,提到了UFF格式转换和插件工厂的使用。
摘要由CSDN通过智能技术生成

原创作品,转载时请务必以超链接形式标明文章原始出处: http://www.dapalm.com/?p=143,作者:大数据,怕了么?

目录

从TensorRT1到TensorRT4一路跟过来,现在支持也越来越完善,NVIDIA的尿性就是不开源,坑不少,作为一个Inference库,确实为部署网络带来方便。下面从下面几个方面梳理总结一下:

  • 多种模型导入
  • 支持层
  • 自定义层
  • UFF格式及转换

多种模型导入

  • Caffe caffemodel目前支持最完整
  • Onnx Onnx目前不支持自定义层
  • TensorFlow TensorFlow的模型需要先导出frozen graph,在转换成uff格式

支持层

TRT实现了22中层接口,Caffe和TensorFlow支持的层都是通过集成这些接口实现,具体每种模型支持哪些具体的层和参数,并没有很明确的支持,只能通过代码去试验。
- Convolution:3D,with or without bias
- Full_Connected
- Activation : ReLu, Sigmoid,Tanh
- Pooling :Max, Average, Max_Average_blend
- LRN
- Scale
- Softmax
- Deconvolution</

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值