AIGC-常见图像质量评估MSE、PSNR、SSIM、LPIPS、FID、CSFD,余弦相似度----理论+代码

持续更新和补充中…多多交流!

参考:
图像评价指标PNSR和SSIM
函数 structural_similarity
图片相似度计算方法总结

MSE和PSNR

MSE:

M S E = 1 m n ∑ i = 0 m − 1 ∑ j = 0 n − 1 [ I ( i , j ) − K ( i , j ) ] 2 MSE=\frac{1}{mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}[I(i,j)-K(i,j)]^2 MSE=mn1i=0m1j=0n1[I(i,j)K(i,j)]2

  • M S E MSE MSE:均方误差(Mean Squared Error),用于衡量两幅图像之间的差异,MSE越小表示两幅图像越相似。
  • m m m:图像的行数或高度。
  • n n n:图像的列数或宽度。
  • I ( i , j ) I(i,j) I(i,j):原始图像的像素值,表示在位置 ( i , j ) (i,j) (i,j)处的像素值。
  • K ( i , j ) K(i,j) K(i,j):处理后的图像的像素值,表示在位置 ( i , j ) (i,j) (i,j)处的像素值。
import torch

def calculate_mse(original_img, enhanced_img):
    # 将图像转换为 PyTorch 的 Tensor
    original_img_tensor = torch.tensor(original_img, dtype=torch.float32)
    enhanced_img_tensor = torch.tensor(enhanced_img, dtype=torch.float32)
    
    # 计算像素值之差的平方
    diff = original_img_tensor - enhanced_img_tensor
    squared_diff = torch.square(diff)
    
    # 计算均方误差
    mse = torch.mean(squared_diff)
    
    return mse.item()  # 返回均方误差的值

# 示例用法
original_img = [0.1, 0.2, 0.3, 0.4]  # 原始图像像素值
enhanced_img = [0.15, 0.25, 0.35, 0.45]  # 处理后图像像素值

mse_value = calculate_mse(original_img, enhanced_img)
print("MSE 值为:", mse_value)

PSNR基于MSE进行计算:

P S N R = 10 ⋅ l o g 10 ( M A X I 2 M S E ) \begin{aligned} PSNR=10\cdot log_{10}(\frac{MAX_{I}^{2}}{MSE}) \end{aligned} PSNR=10log10(MSEMAXI2)

  • MAX表示像素灰度级的最大值,如果一个像素值由B位来表示,则 M A X I = 2 B − 1 MAX_I=2^B-1 MAXI=2B1.
  • MSE表示均方误差
  • 如果是彩色图像,一般有三种方法
    • 分别计算 RGB 三个通道的 PSNR,然后取平均值。
    • 计算 RGB 三通道的 MSE ,然后再除以 3。
    • 将图片转化为 YCbCr 格式,然后只计算 Y分量也就是亮度分量的 PSNR。
import numpy as np

def calculate_mse(original_img, enhanced_img):
    mse = np.mean((original_img - enhanced_img) ** 2)
    return mse

MAX = 255  # 最大灰度级
original_img = np.array([[1, 2, 3], [4, 5, 6]])  # 原始图像
enhanced_img = np.array([[3, 4, 5], [6, 7, 8]])  # 处理后的图像

mse = calculate_mse(original_img, enhanced_img)
psnr = 10 * np.log10(MAX**2 / mse)
print("MSE:", mse)
print("PSNR:", psnr)

SSIM-结构相似性

SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。
S S I M ( x , y ) = [ l ( x , y ) α ⋅ c ( x , y ) β ⋅ s ( x , y ) γ ] SSIM(x,y)=[l(x,y)^\alpha\cdot c(x,y)^\beta\cdot s(x,y)^\gamma] SSIM(x,y)=[l(x,y)αc(x,y)βs(x,y)γ]

  • l ( x , y ) = 2 μ x μ y + C 1 μ x 2 + μ y 2 + C 1 l(x, y) = \frac{2\mu_x\mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1} l(x,y)=μx2+μy2+C12μxμy+C1是亮度相似度,

    • μ x \mu_x μx μ y \mu_y μy分别是图像 x x x y y y的均值
    • C 1 = ( K 1 L ) 2 C_1=(K_1L)^2 C1=(K1L)2 是平滑度常数,k1=0.01为默认值
  • c ( x , y ) = 2 σ x σ y + C 2 σ x 2 + σ y 2 + C 2 c(x, y) = \frac{2\sigma_x\sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2} c(x,y)=σx2+σy2+C22σxσy+C2是对比度相似度

    • σ x \sigma_x σx σ y \sigma_y σy分别是图像 x x x y y y 的标准差
    • C 2 ( K 2 L ) 2 C_2(K_2L)^2 C2(K2L)2 是对比度常数,k2=0.03为默认值
  • s ( x , y ) = σ x y + C 3 σ x σ y + C 3 s(x, y) = \frac{\sigma_{xy} + C_3}{\sigma_x\sigma_y + C_3} s(x,y)=σxσy+C3σxy+C3是结构相似度,

    • σ x y \sigma_{xy} σxy x x x y y y的协方差
    • C 3 C_3 C3是结构常数,常取 C 2 / 2 C_2/2 C2/2

公式中的 α , β , γ \alpha, \beta, \gamma αβγ是权重参数,用于控制每个相似度项的影响力。通常情况下,它们的值是 α = β = γ = 1 \alpha = \beta = \gamma = 1 α=β=γ=1

代码: https://github.com/jorge-pessoa/pytorch-msssim

#针对𝛼,𝛽,𝛾都为1的情况
import torch
import torch.nn.functional as F
from math import exp
import numpy as np
 
 
# 计算一维的高斯分布向量
def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
    return gauss/gauss.sum()
 
 
# 创建高斯核,通过两个一维高斯分布向量进行矩阵乘法得到
# 可以设定channel参数拓展为3通道
def create_window(window_size, channel=1):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
    return window
 
 
# 计算SSIM
# 直接使用SSIM的公式,但是在计算均值时,不是直接求像素平均值,而是采用归一化的高斯核卷积来代替。
# 在计算方差和协方差时用到了公式Var(X)=E[X^2]-E[X]^2, cov(X,Y)=E[XY]-E[X]E[Y].
# 正如前面提到的,上面求期望的操作采用高斯核卷积代替。
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
    # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
    if val_range is None:
        if torch.max(img1) > 128:
            max_val = 255
        else:
            max_val = 1
 
        if torch.min(img1) < -0.5:
            min_val = -1
        else:
            min_val = 0
        L = max_val - min_val
    else:
        L = val_range
 
    padd = 0
    (_, channel, height, width) = img1.size()
    if window is None:
        real_size = min(window_size, height, width)
        window = create_window(real_size, channel=channel).to(img1.device)
 
    mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
    mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
 
    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1 * mu2
 
    sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
    sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
    sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2
 
    C1 = (0.01 * L) ** 2
    C2 = (0.03 * L) ** 2
 
    v1 = 2.0 * sigma12 + C2
    v2 = sigma1_sq + sigma2_sq + C2
    cs = torch.mean(v1 / v2)  # contrast sensitivity
 
    ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
 
    if size_average:
        ret = ssim_map.mean()
    else:
        ret = ssim_map.mean(1).mean(1).mean(1)
 
    if full:
        return ret, cs
    return ret
 
 
 
# Classes to re-use window
class SSIM(torch.nn.Module):
    def __init__(self, window_size=11, size_average=True, val_range=None):
        super(SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.val_range = val_range
 
        # Assume 1 channel for SSIM
        self.channel = 1
        self.window = create_window(window_size)
 
    def forward(self, img1, img2):
        (_, channel, _, _) = img1.size()
 
        if channel == self.channel and self.window.dtype == img1.dtype:
            window = self.window
        else:
            window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
            self.window = window
            self.channel = channel
 
        return ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)

还可以利用函数 structural_similarity

from skimage.metrics import structural_similarity as ssim
import numpy as np

# 创建两个示例图像
im1 = np.random.rand(256, 256)
im2 = np.random.rand(256, 256)

# 计算 SSIM,并使用一些可选参数
ssim_index, ssim_image = ssim(im1, im2,
                              win_size=11,
                              gradient=True,
                              data_range=1.0,
                              multichannel=False,
                              gaussian_weights=True,
                              full=True)

print(f"SSIM Index: {ssim_index}")
print(f"SSIM Image: \n{ssim_image}")
'''
def structural_similarity(*, im1, im2,
                         win_size=None, gradient=False, data_range=None,
                         multichannel=False, gaussian_weights=False,
                         full=False, **kwargs)
'''

参数名类型及说明
im1, im2Ndarray,输入图像
win_sizeint or none, optional,滑动窗口的边长,必须为奇数,默认值为7。当 gaussian_weights=True 时,滑动窗口的大小取决于 sigma
gradientbool, optional,若为 True,返回相对于 im2 的梯度
data_rangefloat, optional,图像灰度级数,图像灰度的最小值和最大可能值,默认情况下根据图像的数据类型进行估计
multichannelbool, optional,值为 True 时将 img.shape[-1] 视为图像通道数,对每个通道单独计算,取平均值作为相似度
gaussian_weightsbool, optional,高斯权重,值为 True 时,平均值和方差在空间上的权重为归一化高斯核,宽度 sigma=1.5
use_sample_covariancebool若为True,则通过N-1归一化协方差,N是滑动窗口内的像素数
其它参数说明
K1,K2loat, 算法参数,默认值K1=0.01,K2=0.03
sigmafloat,当gaussian_weights=True时,决定滑动窗口大小
fullbool, optional,值为 true 时,返回完整的结构相似性图像
返回值说明
mssim平均结构相似度
grad结构相似性梯度 (gradient=True)
S结构相似性图像(full=True)

FIDFrechlet Inception Distance(FID)

FID是基于Inception-V3模型(预训练好的图像分类模型)的feature vectors来计算真实图片与生成图片之间的距离,用高斯分布来表示,FID就是计算两个分布之间的Wasserstein-2距离。将真实图片和预测图片分别经过Inception模型中,得到2048维度(特征的维度)的embedding vector。把生成和真实的图片同时放入Inception-V3中,然后将feature vectors取出来用于比较。
d 2 = ∣ ∣ μ 1 − μ 2 ∣ ∣ 2 + T r ( C 1 + C 2 − 2 ∗ ( C 1 ∗ C 2 ) ) d^2 = ||\mu_1 -\mu_2||^2 + Tr(C_1 + C_2 - 2*\sqrt{(C_1 *C_2)}) d2=∣∣μ1μ22+Tr(C1+C22(C1C2) )

  • μ 1 , μ 2 μ_1,μ_2 μ1μ2为均值, C 1 , C 2 C_1,C_2 C1,C2为协方差, T r Tr Tr为矩阵的迹
  • FID越低,说明预测分布越接近于真实的分布
  • 可以评估类内多样性,例如每个类别只产生一张一模一样的照片,FID会比较高,也就意味着评估效果比较差
import numpy as np
from scipy.linalg import sqrtm

def calculate_fid(act1, act2):
    # 计算均值和协方差统计量
    mu1, sigma1 = act1.mean(axis=0), np.cov(act1, rowvar=False)
    mu2, sigma2 = act2.mean(axis=0), np.cov(act2, rowvar=False)
    
    # 计算均值之间的平方差之和
    ssdiff = np.sum((mu1 - mu2)**2.0)
    
    # 计算协方差之积的平方根
    covmean = sqrtm(sigma1.dot(sigma2))
    
    # 检查从sqrtm中移除的复数部分
    if np.iscomplexobj(covmean):
        covmean = covmean.real

    # 计算 FID 分数
    fid = ssdiff + np.trace(sigma1 + sigma2 - 2.0 * covmean)
    return fid

# 示例用法
act1 = np.random.rand(100, 10)  # 隐变量 act1
act2 = np.random.rand(100, 10)  # 隐变量 act2

fid_score = calculate_fid(act1, act2)
print("FID 分数为:", fid_score)

Inception score

Inception Score基于Inception-V3模型的分类概率来评估生成照片的质量,通过使用预训练的卷积神经网络(通常是Inception网络)来评估生成图像的质量和多样性。
K L   d i v e r g e n c e = p ( y ∣ x ) ∗ ( l o g ( p ( y ∣ x ) ) − l o g ( p ( y ) ) ) \mathrm{KL~divergence=p(y|x)*(log(p(y|x))-log(p(y)))} KL divergence=p(y∣x)(log(p(y∣x))log(p(y)))

  • p ( y ∣ x ) p(y|x) pyx:表示在给定条件 𝑥下,观测到的概率 𝑦
  • p ( y ) p(y) p(y) 表示概率 𝑦的边际概率
  • 对KL散度对所有类别求和再取平均值,并且取一个e指数,即可得到Inception Score。一般生成5000张照片S的值在0~1000范围内。
  • 希望 p ( y ∣ x ) p(y|x) p(yx)应该具有低熵(即越真实),p(y)应该具有高熵即越多样,因此,IS值越大越好
  • 缺点:缺乏跟真实照片之间的比较;缺乏类内多样性,例如每个类别只产生一张一模一样的照片,IS一样很高
import numpy as np

def calculate_inception_score(p_yx, eps=1E-16):
    # 计算 p(y):所有样本的平均值
    p_y = np.expand_dims(p_yx.mean(axis=0), 0)
    
    # 计算每个图像的 KL 散度
    kl_d = p_yx * (np.log(p_yx + eps) - np.log(p_y + eps))
    
    # 对类别求和
    sum_kl_d = kl_d.sum(axis=1)
    
    # 对所有图像的 KL 散度取平均值
    avg_kl_d = np.mean(sum_kl_d)
    
    # 撤销对数运算
    is_score = np.exp(avg_kl_d)
    
    return is_score

# 示例用法
p_yx = np.random.rand(100, 10)  # 概率分布 p(y|x)

is_score = calculate_inception_score(p_yx)
print("Inception Score 值为:", is_score)

LPIPS

论文:
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
代码:
LPIPS代码实现-Pytorch

在这里插入图片描述

LPIPS:学习感知图像块相似度(Learned Perceptual Image Patch Similarity, LPIPS)也称为“感知损失”(perceptual loss),用于度量两张图像之间的差别,LPIPS 测量风格化图像和相应内容图像之间的内容保真度。它通过比较图像块的深层特征来工作,这些特征能够捕捉到人类视觉系统中对图像质量的感知。LPIPS的值越低表示两张图像越相似,反之,则差异越大。

步骤:从 l l l层提取特征堆(feature stack)并在通道维度中进行单位规格化(unit-normalize)。利用向量 W l W_l Wl来放缩激活通道数,最终计算 L 2 L_2 L2距离。 最后在空间上平均,在通道上求和。 d ( x , x 0 ) = ∑ l 1 H l W l ∑ h , w ∣ ∣ w l ⊙ ( y ^ h w l − y ^ 0 h w l ) ∣ ∣ 2 2 d(x,x_0)=\sum_l\frac1{H_lW_l}\sum_{h,w}||w_l\odot(\hat{y}_{hw}^l-\hat{y}_{0hw}^l)||_2^2 d(x,x0)=lHlWl1h,w∣∣wl(y^hwly^0hwl)22

  • d ( x , x 0 ) d(x, x_0) d(x,x0):表示图像块 x x x x 0 x_0 x0 之间的感知距离,即它们在感知上的差异度量。

  • l l l:表示特征堆中的层(layer)索引,用于指代不同的深度特征表示。

  • H l , W l H_l,W_l HlWl:表示特征堆中第 l l l 层的高度(height)和宽度(width)。

  • h , w h, w h,w:分别表示特征堆中第 l l l 层的高度和宽度索引,用于遍历特征图中的每个位置。

  • w l w_l wl:表示用于缩放特征通道的权重向量,对应于特征堆中第 l l l 层的通道数。

  • y ^ h w l \hat{y}_{hw}^l y^hwl:表示特征堆中第 l l l 层的特征表示的一个元素,对应于在位置 ( h , w ) (h, w) (h,w) 处的特征向量。

  • y ^ 0 h w l \hat{y}_{0hw}^l y^0hwl:表示特征堆中第 l l l 层的参考特征表示的一个元素,对应于在位置 ( h , w ) (h, w) (h,w) 处的参考特征向量。

import torch  
import lpips  

use_gpu = False  
spatial = True  #返回感知距离的空间地图

# 创建线性校准的 LPIPS 模型
loss_fn = lpips.LPIPS(net='alex', spatial=spatial)  # 使用 AlexNet 架构创建 LPIPS 模型
# loss_fn = lpips.LPIPS(net='alex', spatial=spatial, lpips=False)  # 使用不同网络配置的 LPIPS 模型

if use_gpu:
    loss_fn.cuda()  # 如果 use_gpu 为 True,则将 LPIPS 模型移动到 GPU 上

# 示例中使用虚拟张量
root_path = r'D:\Project\results\faces'  # 存储图像的根路径
img0_path_list = []  # 存储文件名中包含 '_generated' 的图像路径列表
img1_path_list = []  # 存储文件名中包含 '_real' 的图像路径列表

# 循环遍历图像路径(代码已注释,不会执行)
for root, _, fnames in sorted(os.walk(root_path, followlinks=True)):
    for fname in fnames:
        path = os.path.join(root, fname)
        if '_generated' in fname:
            img0_path_list.append(path)
        elif '_real' in fname:
            img1_path_list.append(path)

distances = []  # 存储计算得到的图像对之间的感知距离
for i in range(len(img0_path_list)):
    dummy_img0 = lpips.im2tensor(lpips.load_image(img0_path_list[i]))  # 加载并将图像转换为张量
    dummy_img1 = lpips.im2tensor(lpips.load_image(img1_path_list[i]))  # 加载并将图像转换为张量
    
    if use_gpu:
        dummy_img0 = dummy_img0.cuda()  # 将图像张量移动到 GPU
        dummy_img1 = dummy_img1.cuda()  # 将图像张量移动到 GPU
    
    dist = loss_fn.forward(dummy_img0, dummy_img1)  # 计算图像对之间的感知距离
    distances.append(dist.mean().item())  # 将平均距离添加到 distances 列表中

print('Average Distances: %.3f' % (sum(distances) / len(img0_path_list)))  # 打印平均感知距离

CSFD

代码:https://github.com/jiwoogit/StyleID
论文:https://jiwoogit.github.io/StyleID_site/

Content Feature Structural Distance-CFSD内容特征结构距离。在风格迁移评估中,内容保真度通常依赖于LPIPS距离,该指标使用了在ImageNet数据集上预训练的AlexNet模型的特征空间,这使得LPIPS对纹理有偏见。图像的风格信息可能会影响LPIPS分数,因为它偏向于纹理特征。为了减少风格信息对评估的影响,作者引入了CFSD,这是一种只考虑图像块之间空间相关性的新距离度量。

CFSD的计算步骤

  • 获取特征图:对于给定图像 I I I,首先获取特征图 F ∈ R h × w × c F \in \mathbb{R}^{h \times w \times c} FRh×w×c,这是VGG19网络中conv3层的输出特征。
  • 计算相似性矩阵:计算特征图 F F F中每对特征之间的相似性,得到相似性矩阵 M = F × F T M = F \times F^T M=F×FT,其中 M ∈ R h × w × h × w M \in \mathbb{R}^{h \times w \times h \times w} MRh×w×h×w
  • 应用softmax操作:对相似性矩阵 M M M 的每个元素应用softmax操作,将其建模为概率分布,得到相关性矩阵 S = [ softmax ( M i ) ] h × w i = 1 S = [\text{softmax}(M_i)]_{h \times w}^{i=1} S=[softmax(Mi)]h×wi=1,其中 M i ∈ R 1 × h × w M_i \in \mathbb{R}^{1 \times h \times w} MiR1×h×w 是第 i i i 个图像块与其他块的相似性。
  • 计算KL散度:CFSD定义为两个相关性矩阵之间的Kullback-Leibler散度(KL-divergence)。

CFSD公式

C F S D = 1 h w ∑ i = 1 h w D K L ( S i c ∣ ∣ S i c s ) , \mathrm{CFSD}=\frac{1}{hw}\sum_{i=1}^{hw}D_{\mathrm{KL}}(S_{i}^{c}||S_{i}^{cs}), CFSD=hw1i=1hwDKL(Sic∣∣Sics),

  • S i c S_{i}^{c} Sic:内容图像对应的相关性矩阵的第i个元素,这些矩阵是通过计算图像特征图(例如,VGG19网络的conv3层输出)中每对特征之间的相似性得到的。
  • S i c s S_{i}^{cs} Sics:风格图像对应的相关性矩阵的第i个元素
  • D K L D_{KL} DKL:KL散度
#StyleID\evaluation\eval_artfid.py
def compute_patch_simi(path_to_stylized, path_to_content, batch_size, device, num_workers=1):
    """Computes the distance for the given paths.

    Args:
        path_to_stylized (str): Path to the stylized images.
        path_to_style (str): Path to the style images. [注:这里应该为 path_to_content,修正为 path_to_content]
        batch_size (int): Batch size for computing activations.
        content_metric (str): Metric to use for content distance. Choices: 'lpips', 'vgg', 'alexnet' [注:缺少 content_metric 参数]
        device (str): Device for computing activations.
        num_workers (int): Number of threads for data loading.

    Returns:
        (float) FID value. [注:文档中写的是 FID value,但函数名为 compute_patch_simi,可能存在混淆,需要核对和确认]

    """
    device = torch.device('cuda') if device == 'cuda' and torch.cuda.is_available() else torch.device('cpu')

    # 根据路径获取图像路径并排序以匹配样式化图像与对应的内容图像
    stylized_image_paths = get_image_paths(path_to_stylized, sort=True)
    content_image_paths = get_image_paths(path_to_content, sort=True)

    # 确保样式化图像和内容图像数量相等
    assert len(stylized_image_paths) == len(content_image_paths), 'Number of stylized images and number of content images must be equal.'

    # 定义图像转换方法
    style_transforms = ToTensor()
    
    # 创建样式化图像的数据集和数据加载器
    dataset_stylized = ImagePathDataset(stylized_image_paths, transforms=style_transforms)
    dataloader_stylized = torch.utils.data.DataLoader(dataset_stylized,
                                                      batch_size=batch_size,
                                                      shuffle=False,
                                                      drop_last=False,
                                                      num_workers=num_workers)

    # 创建内容图像的数据集和数据加载器
    dataset_content = ImagePathDataset(content_image_paths, transforms=style_transforms)
    dataloader_content = torch.utils.data.DataLoader(dataset_content,
                                                     batch_size=batch_size,
                                                     shuffle=False,
                                                     drop_last=False,
                                                     num_workers=num_workers)
    
    # 初始化用于计算距离的度量类
    metric = image_metrics.PatchSimi(device=device).to(device)

    dist_sum = 0.0
    N = 0
    pbar = tqdm(total=len(stylized_image_paths))
    
    # 遍历样式化图像和内容图像的批次
    for batch_stylized, batch_content in zip(dataloader_stylized, dataloader_content):
        # 在不计算梯度的上下文中进行操作,节省内存和计算资源
        with torch.no_grad():
            # 计算当前批次的距离
            batch_dist = metric(batch_stylized.to(device), batch_content.to(device))
            N += batch_stylized.shape[0]
            dist_sum += torch.sum(batch_dist)

        pbar.update(batch_stylized.shape[0])

    pbar.close()

    return dist_sum / N

def compute_cfsd(path_to_stylized, path_to_content, batch_size, device, num_workers=1):
    """Computes CFSD for the given paths.

    Args:
        path_to_stylized (str): Path to the stylized images.
        path_to_content (str): Path to the content images.
        batch_size (int): Batch size for computing activations.
        device (str): Device for computing activations.
        num_workers (int): Number of threads for data loading.

    Returns:
        (float) CFSD value.
    """
    print('Compute CFSD value...')

    # 计算 Patch Similarity,该函数返回样式化图像和内容图像的距离值
    simi_val = compute_patch_simi(path_to_stylized, path_to_content, 1, device, num_workers)
    
    # 将距离值保留四位小数
    simi_dist = f'{simi_val.item():.4f}'
    return simi_dist

#evaluation\image_metrics.py
class PatchSimi(nn.Module):

    def __init__(self, device=None):
        # 初始化函数
        super(PatchSimi, self).__init__()
        # 加载预训练的 VGG19 模型,并移到指定设备上进行评估
        self.model = models.vgg19(pretrained=True).features.to(device).eval()
        # 指定层名称和替换名称的映射
        self.layers = {"11": "conv3"}
        # 图像归一化的均值和标准差
        self.norm_mean = (0.485, 0.456, 0.406)
        self.norm_std = (0.229, 0.224, 0.225)
        # KL 散度损失函数
        self.kld = torch.nn.KLDivLoss(reduction='batchmean')
        
        self.device = device

    def get_feats(self, img):
        features = []
        # 遍历 VGG19 模型的各层并提取特征
        for name, layer in self.model._modules.items():
            img = layer(img)
            if name in self.layers:
                features.append(img)
        return features
    
    def normalize(self, input):
        # 图像归一化处理
        return transforms.functional.normalize(input, self.norm_mean, self.norm_std)

    def patch_simi_cnt(self, input):
        b, c, h, w = input.size()
        # 转置和重塑特征
        input = torch.transpose(input, 1, 3)
        features = input.reshape(b, h*w, c).div(c)
        feature_t = torch.transpose(features, 1, 2)
        # 计算内容图像的特征相似度
        patch_simi = F.log_softmax(torch.bmm(features, feature_t), dim=-1)
        return patch_simi.reshape(b, -1)

    def patch_simi_out(self, input):
        b, c, h, w = input.size()
        # 转置和重塑特征
        input = torch.transpose(input, 1, 3)
        features = input.reshape(b, h*w, c).div(c)
        feature_t = torch.transpose(features, 1, 2)
        # 计算样式化图像的特征相似度
        patch_simi = F.softmax(torch.bmm(features, feature_t), dim=-1)
        return patch_simi.reshape(b, -1)

    def forward(self, input, target):
        src_feats = self.get_feats(self.normalize(input))
        target_feats = self.get_feats(self.normalize(target))
        init_loss = 0.
        # 计算各层的 KL 散度并求和作为初始损失值
        for idx in range(len(src_feats)):
            init_loss += F.kl_div(self.patch_simi_cnt(src_feats[idx]), self.patch_simi_out(target_feats[idx]), reduction='batchmean')


余弦相似度

cos ⁡ ( θ ) = ∑ i = 1 n ( x i × y i ) ∑ i = 1 n ( x i ) 2 × ∑ i = 1 n ( y i ) 2 = a ∙ b ∣ ∣ a ∣ ∣ × ∣ ∣ b ∣ ∣ \begin{aligned} \begin{array}{c}\\{\cos( \theta )}\\\end{array} =\quad\frac{\sum_{i = 1}^{n} ( x_{i} \times y_{i} )}{\sqrt{\sum_{i = 1}^{n} ( x_{i} )^{2}} \times \sqrt{\sum_{i = 1}^{n} ( y_{i} )^{2}}} = \frac{\mathrm{a} \bullet \mathrm{b}}{| | \mathrm{a} | | \times | | \mathrm{b} | |} \end{aligned} cos(θ)=i=1n(xi)2 ×i=1n(yi)2 i=1n(xi×yi)=∣∣a∣∣×∣∣b∣∣ab

# -*- coding: utf-8 -*-
# !/usr/bin/env python
# 余弦相似度计算
from PIL import Image
from numpy import average, dot, linalg
# 对图片进行统一化处理
def get_thum(image, size=(64, 64), greyscale=False):
    # 利用image对图像大小重新设置, Image.ANTIALIAS为高质量的
    image = image.resize(size, Image.ANTIALIAS)
    if greyscale:
        # 将图片转换为L模式,其为灰度图,其每个像素用8个bit表示
        image = image.convert('L')
    return image
# 计算图片的余弦距离
def image_similarity_vectors_via_numpy(image1, image2):
    image1 = get_thum(image1)
    image2 = get_thum(image2)
    images = [image1, image2]
    vectors = []
    norms = []
    for image in images:
        vector = []
        for pixel_tuple in image.getdata():
            vector.append(average(pixel_tuple))
        vectors.append(vector)
        # linalg=linear(线性)+algebra(代数),norm则表示范数
        # 求图片的范数
        norms.append(linalg.norm(vector, 2))
    a, b = vectors
    a_norm, b_norm = norms
    # dot返回的是点积,对二维数组(矩阵)进行计算
    res = dot(a / a_norm, b / b_norm)
    return res
image1 = Image.open('010.jpg')
image2 = Image.open('011.jpg')
cosin = image_similarity_vectors_via_numpy(image1, image2)
print('图片余弦相似度', cosin)
  • 6
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 通过fsim、ssim、msepsnr进行图像质量评估的比较研究是为了评估图像处理算法或图像传输中所使用的图像质量。下面将对这四个指标进行具体分析。 首先,全参考性图像质量评估指标FSIM(Feature Similarity Index Measure)是一种利用结构特征对图像进行评估的方法。FSIM能够考虑到图像的结构、亮度和对比度,对于复杂场景的图像评估效果较好。 其次,结构相似性指数SSIM (Structural Similarity Index) 是一种广泛使用的图像质量评估指标。SSIM基于图像的亮度、对比度和结构三个方面进行计算,具有较强的鲁棒性,并且与人眼感知有较好的一致性。 MSE(Mean Squared Error,均方误差)是一种广泛用于评估两个图像差异的指标。MSE是通过计算原图像与处理后图像之间差异的平方和来评估质量的,数值越小表示图像差异越小,但MSE往往无法准确反映人眼感知到的差异。 PSNR(Peak Signal to Noise Ratio,峰值信噪比)是通过原始图像与处理图像之间的均方误差进行计算的指标。PSNR对于衡量图像处理算法的失真有一定的参考价值,数值越大表示图像质量越好,但PSNR对于人眼感知的图像质量差异并不敏感。 综上所述,FSIM和SSIM是针对结构特征进行评估的指标,对复杂场景的图像具有较好的评估效果;而MSEPSNR则通过比较原图像与处理图像之间的差异来评估图像质量,但对于人眼感知的差异较为有限。因此,在具体应用中,需要根据评估场景和目的选择合适的指标进行图像质量评估。 ### 回答2: 图像质量评估是对图像进行客观评价的一种方法,而通过比较fsim、ssim、msepsnr这四种评估指标,可以更全面地了解图像质量。 首先,fsim是基于感知机制的指标,可以评估图像的结构、亮度、对比度等方面的质量。它将图像信息的结构特征与人类视觉系统的感知能力相结合,能更准确地反映人类对图像质量的主观感知。与fsim类似,ssim也是一种感知质量指标,但它重点评估图像的结构相似性,即图像是否保留了原始图像的结构信息。fsim和ssim都考虑了人类视觉系统的特性,因此对于人眼感知相似度较高的图像能够得到更准确的评估结果。 另一方面,mse是一种常用的基于误差的质量评估指标,它衡量了测试图像与参考图像之间像素级别的差异。mse值越小,表示两幅图像越接近,但mse无法考虑到人类视觉系统的感知能力,所以它不能很好地反映图像质量。 最后,psnr也是一种基于误差的评估指标,它通过比较两幅图像的峰值信噪比来评估图像质量。峰值信噪比越高,表示图像质量越好。psnr是一种常用的指标,它可以测量图像的保真度,但也不能完全符合人类对图像质量的感知。 综上所述,fsim和ssim这两种基于感知机制的指标可以更好地反映人类对图像质量的感知,而msepsnr这两种基于误差的指标则更多地关注像素级别的差异。在实际应用中,根据具体的评估需求,可以选择适合的指标进行图像质量评估。 ### 回答3: 通过fsim (Feature SIMilarity),ssim (Structural SIMilarity),mse (Mean Squared Error)和psnr (Peak Signal-to-Noise Ratio)这四种方法对图像质量进行评估的比较研究如下: 首先,fsim是一种基于感知失真的图像质量评估算法。它使用感知特征的相似性来计算图像之间的相对失真程度。fsim不仅考虑了亮度和对比度的信息,还将纹理信息考虑在内。通过计算图像的感知特征之间的相似性,可以得到更准确的图像质量评估结果。 ssim是一种衡量结构相似性的指标。它通过比较图像的亮度、对比度和结构信息来评估图像之间的相似程度。ssim在图像质量评估中广泛应用,它考虑了图像的感知特征,对于低质量图像和失真图像可以提供准确的评估mse是衡量图像失真程度的指标。它计算了原始图像与重建图像之间的像素差的平方的均值。mse越大,表示图像失真程度越高。mse是一个简单易计算的指标,但它只考虑了亮度信息,对于某些图像质量问题可能不敏感。 psnr是通过计算原始图像与重建图像之间的峰值信噪比来评估图像质量的指标。它是使用信噪比的倒数来表示图像失真程度。psnr越高,表示图像质量越好。psnr是一种常用的图像质量评估指标,但它只考虑了亮度信息,对于某些图像质量问题可能不敏感。 综上所述,fsim和ssim是两种比较先进和准确的图像质量评估算法,可以综合考虑感知失真和结构相似性。而msepsnr是比较传统的图像质量评估指标,主要考虑了亮度信息。在进行图像质量评估时,可以根据评估需要选择适合的指标进行比较研究。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值