深度学习的数学基础(三) 导数与梯度下降法

(一) 导数的定义:

        设函数 y=f(x) 在点 x_{0} 的某个邻域内有定义,当自变量 x 在 x_{0} 处取得增量 \Delta x, 相应的函数 y 取得增量 \Delta y ,如果 \Delta y 与 \Delta x 之比在 \Delta x -> 0 时存在,则称函数 y=f(x)  在在点  x_{0} 处可导, 并称这个极限为函数  y=f(x) 在点 x_{0} 处的导数。

(二) 导数的意义:

1. 几何意义:

导数是函数在某一点处的切线斜率,如下图

当 \Delta x 无穷小时,P点接近于 P_{0}  ,直线 T 与函数 y=f(x) 相切。

2. 物理意义:

导数是速度的变化率。速度的计算公式 v = s / t ,计算的是平均速度。有时我们需要知道瞬时的速度:

v=(s-s_{0})/(t-t_{0})

当 t-t_{0} 接近于零时,移动了一小段距离,这段距离和 t-t_{0} 之比就是瞬时速度。

(三) 导数的记法

函数  y=f(x) 的导数采用以下两种记法:

{f}' 或  \frac{\mathrm{d}y }{\mathrm{d} x}

在 x_{0} 处的导数记作:

{f}'(x_{0}) 或 \frac{\mathrm{d}y }{\mathrm{d} x}|x_{0}

(四) 导数的公式

人们为了方便使用导数,总结出了一套简单的求导公式,根据这些公式,可以容易地求解复杂函数的导数。

1. 常用的求导公式:

{C}' = 0 , C \in R ,

{(nx)}' = n , n \in R ,

{(sin x)}' = cos x ,

{(cos x)}' = -sin x ,

{(x^{n})}' = nx^{(n-1)} ,  n \in R ,

2. 和、差、积、商的求导:

{(a\pm b)}' = {a}'\pm {b}' , 和差求导

{(ab)}' = {a}'b+ a{b}' , 积求导

{(\frac{b}{a})}'=\frac{​{b}'a-b{a}'}{a^2} , 商求导

3. 链式求导法则

五) 偏导数

 

 

(六) 梯度下降法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值