Kimi介绍

Kimi确实非常厉害,以下是具体原因:

技术领先

  • 长文本处理能力:Kimi在长文本处理领域处于领先地位。其无损长上下文窗口的方案,是在逐字阅读全文后给出答案,而其他大厂的RAG技术是对全文关键信息进行检索生成答案,可能会丢失部分关键信息。与前者相比,无论对比输出的深度还是精度,大厂的模型都还存在较大差距。Kimi的无损压缩技术可减少参数对存储的需求、推理的算力,以及数据传输的带宽占用,从而高效率无损处理百万级的长Token,目前Kimi并没有公布无损压缩技术细节,大厂想要“学习”并工程化是非常困难的。

  • 性能指标优异:大模型应用效果通常取决于两个核心指标,一是模型参数量,决定了大模型的“计算”能力;二是能够接收多少文本输入,即长文本技术,决定了大模型的“内存”能力。

  • Kimi Chat最多支持20万汉字的超长文本输入,是目前全球市场上能够产品化使用的大模型服务中所能支持的最长上下文输入长度。

  • 作为对比,Anthropic的Claude-100k模型支持约8万字,而OpenAI的GPT-4-32k只支持约2.5万字。

团队实力强大

  • 创始人背景:Kimi团队的灵魂人物杨植麟拥有清华和卡内基梅隆背景,本人是长文本领域专家。在过去五年内的自研语言处理(NLP)领域,杨植麟有相当的影响力。在华人学者引用排名中,杨植麟的学术论文位居前10,在40岁以下排名第一。在读博士期间,杨植麟就以第一作者身份发表Transformer-XL和XLNet两项工作,在谷歌学术上被引用近两万次,并在多个NLP任务上取得了当时的最佳效果。

  • 团队成员:月之暗面吸纳了许多出色的人才,包括来自Google、Meta、Amazon等巨头的海外人才,许多团队成员有训练超大模型的经验,参与了Google人工智能模型Gemini、国内最早的大模型悟道、盘古等系统的开发工作;此外,还有拥有几亿DAU产品经验的成员加入。

战略清晰

  • 垂直领域深耕:为快速“跟上形势”,大厂一上手就追求花哨的多模态,导致“样样通样样松”走入平庸。而Kimi选择“一击必杀”——首先垂直选择打透长文本领域,以培养用户心智,积累用户留存。自发布以来,Kimi除了将上下窗口从最初的20万字拓展到200万字之外,在指令理解、信息检索能力和模型相应速度上,也持续迭代。月之暗面内部人士介绍,基于Infra层的优化,Kimi生成速度较去年10月份提升了三倍。

  • 持续迭代:Kimi在产品发布后不断进行优化和升级,从最初的20万字拓展到200万字的超长文本输入,同时在指令理解、信息检索能力和模型相应速度上也持续迭代,显示出强大的技术实力和对用户体验的重视。

市场认可

  • 用户口碑:Kimi Chat在2023年10月初次亮相时,凭借约20万汉字的无损上下文能力,帮助用户解锁了很多新的使用场景,包括专业学术论文的翻译和理解、辅助分析法律问题、一次性整理几十张发票、快速理解API开发文档等,获得了良好的用户口碑和用户量的快速增长。

  • 融资情况:月之暗面成立后迅速完成首轮融资,获得红杉中国、真格基金等一线VC的押注。2023年10月,成立仅半年的月之暗面宣布在“长文本”领域实现了突破,推出了首个支持输入20万汉字的智能助手产品Kimi Chat。近日,月之暗面又完成了超10亿美元新一轮融资,投资方包括红杉中国、小红书、美团、阿里,老股东跟投。这是国内AI大模型公司迄今获得的单轮最大金额融资。成立不到一年,月之暗面估值已达约25亿美金,已成为国内大模型领域的头部企业之一。

综上所述,Kimi在技术、团队、战略和市场等方面都表现出色,确实非常厉害。

03-13
### 关于 Kimi 的功能介绍 Kimi 家族中的成员“鹿康太”,具有处理多达200万字文本的能力,这一特性处于内测阶段[^1]。对于希望获取大量信息或者深入分析长篇文档的用户来说,这样的能力无疑是非常有吸引力的。 作为一个智能助手平台,Kimi.ai 提供了一个能够阅读长达二十万字小说的服务,并支持浏览互联网内容的功能[^2]。这意味着用户可以通过与 Kimi 进行对话来获得所需的信息,无论是文学作品还是实时网络资讯。 最新版本的 Kimi 已经加入了语音通话的支持,不仅允许用户创建个性化的声音模型,甚至可以在模拟环境中练习面试场景[^3]。这种增强的人机交互方式使得沟通更加自然流畅,同时也为用户提供了一种新颖的学习工具。 ```python # Python 示例代码展示如何通过API请求获取数据并整理成表格形式 import requests from tabulate import tabulate def get_tall_buildings(): url = "https://api.example.com/tallest-buildings" response = requests.get(url) buildings_data = response.json() table_headers = ["Name", "Country", "Construction Year", "Height (m)", "Usage"] table_rows = [] for building in buildings_data['buildings']: row = [ building["name"], building["country"], str(building["construction_year"]), str(building["height_meters"])+" m", ", ".join(building["usage"]) ] table_rows.append(row) print(tabulate(table_rows, headers=table_headers)) get_tall_buildings() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值