from: http://www.hxxiaopei.com/?p=138
最近在看项亮同学的推荐系统实践,整理一下思路。
推荐系统,整体上有三种方式:
- user->user->item, 推荐与其相同兴趣的用户喜欢的item,user-based
- user->item->item, 推荐与其喜欢的item相似的item,item-based
- user->item-feature->item,抽取用户喜欢item的特征,推荐具备这些特征的item, model-based
针对前两个,目前绝大多数采用的都是item-based,比如amazon等,谈到item-base优于user-based,但是类似digg等还是采用user-based,效果也还不错,所以不能哪个一定优于另一个,只是使用的场景不一样。
针对这两个方法作对比:
user-based更多的考虑相同爱好的用户兴趣,推荐这些用户喜欢/访问过的item,和用户当前的行为关系不大,更多的是用户的这些朋友访问过什么,属于圈子的社会化行为,推荐的item是相同爱好用户最喜欢的item,所以具备热点效应,也就是推荐圈子用户访问最多的;同时也可以将圈子用户刚刚访问item推荐出来,具备很强的实时性,尤其是新引入的热点,可以很快的扩散,也能解决new-item的冷启动问题。
item-based 主要考虑用户历史兴趣,推荐与用户历史喜欢item相似的item,和用户的当前行为有很大的关系,推荐的item与用户当前click的相似性,用户是可以理解的,也就是所谓的可解释性很强,推荐的item也不是热门的,很有可能是冷门(长尾),但是和用户的兴趣

本文梳理了推荐系统中user-based和item-based推荐算法的原理,user-based算法通过找到兴趣相投的用户来推荐他们喜欢的物品,而item-based算法则依据用户已喜欢的物品来推荐相似的物品。同时提到了model-based方法,该方法基于用户喜欢物品的特征进行推荐。
最低0.47元/天 解锁文章
1228

被折叠的 条评论
为什么被折叠?



