在训练模型的过程中,数据预计可以划分为训练集(train)、验证集(validation)和测试集(test)
实际应用中,一般只将数据集分成两类,即training set 和test set,大多数文章并不涉及validation set。
验证集的作用
training set是用来训练模型或确定模型参数的,如ANN中权值等;
validation set是用来做模型选择(model selection),即做模型的最终优化及确定的,如ANN的结构;
test set则纯粹是为了测试已经训练好的模型的推广能力
验证集的主要作用是 调整模型的超参数,验证不同算法,检验哪种算法更有效
对学习出来的模型,调整分类器的参数,如在神经网络中选择隐藏单元数。验证集还用来确定网络结构或者控制模型复杂程度的参数。
从狭义来讲,验证集没有参与梯度下降的过程,也就是说是没有经过训练的;但从广义上来看,验证集却参与了一个“人工调参”的过程,我们根据验证集的结果调节了迭代数、调节了学习率等等,使得结果在验证集上最优