1-NED

1-NED 指的是normalized edit distance, 是在《ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard》里定义的

1-NED就是1 减 NED

edit distance 编辑距离

在NLP任务中经常会碰到比较两个字符串的相似度,比如拼写纠错和指代判断。用户很可能在搜索时输入错别字,比如“微信”输成了“为信”,但是搜索引擎返回的结果纠正为“微信”的搜索结果,如图1-1。另外比如“北京大学校长”和“北大校长”,“北京故宫博物院”和“北京故宫”都是指的同一个人或事物。

上述问题,可以利用两个词或短语的编辑距离大小来解决。

利用编辑距离可以判断两个字符串的相似程度,即从一个字符串到另一个字符串所需要的编辑次数,包括插入字符,删除字符及替换字符这三种操作


 

### NED in IT Context 在网络工程领域,NED通常指代 **Network Engineering Design** 或者 **Network Equipment Distribution**。然而,在更广泛的IT上下文中,如果提到NED可能还涉及其他概念,比如网络嵌入(Network Embedding Depth)。以下是关于这些可能性的具体解释: #### Network Engineering Design (NED) 在这一语境下,NED指的是网络工程设计的过程,它涵盖了从需求分析到最终部署的所有阶段。此过程的核心目标是创建一个高效、可扩展且安全的网络架构[^1]。 #### Network Equipment Distribution (NED) 当讨论硬件设备分布时,NED可以表示为网络设备分发机制。这种机制用于规划路由器、交换机和其他联网组件的最佳地理布局以优化性能并减少延迟[^2]。 #### Network Embedding Depth (假设定义下的NED) 虽然这不是标准术语,但在某些研究论文中,“NED”也可能被用来描述节点嵌入过程中所达到的深度级别或维度大小。例如,在构建图结构数据上的低维向量空间映射时,更深的嵌入可能会捕捉更多复杂的拓扑关系特性。 ```python import networkx as nx from node2vec import Node2Vec # 创建一个简单的无向图 G = nx.Graph() G.add_edges_from([(1, 2), (1, 3), (2, 4), (3, 4)]) # 应用Node2Vec算法获取节点嵌入 node2vec = Node2Vec(G, dimensions=64, walk_length=30, num_walks=200, workers=4) model = node2vec.fit(window=10, min_count=1) print(model.wv.vectors[:5]) # 显示前五个节点的嵌入向量 ``` 上述代码片段展示了如何利用 `node2vec` 方法来计算给定图形中的节点嵌入。这一步骤对于理解复杂网络内部的关系至关重要,并且能够支持诸如推荐系统之类的高级应用开发工作流程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值