docker使用GPU(nvidia-docker)

本文介绍了如何在升级到Docker 19后利用nvidia-docker轻松配置GPU容器,即使宿主机CUDA为10.0,且理解不同CUDA版本共存原理。重点讲解了使用nvidia-smi命令行和不同GPU设置的方法,以及官方镜像nvidia/cuda:9.0-base的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      在docker19以前都需要单独下载nvidia-docker1或nvidia-docker2来启动容器,自从升级了docker19后跑需要gpu的docker只需要加个参数–gpus all 即可

      为了让docker支持nvidia显卡,英伟达公司开发了nvidia-docker。该软件是对docker的包装,使得容器能够看到并使用宿主机的nvidia显卡。

      为什么我的本机CUDA版本是10.0 而docker中是cuda9.0却也能够跑起来

      一般来说,一台机器只能有一个版本的驱动(nvidia-smi中显示的Driver Version),然而CUDA是可以多版本共存的,使用docker镜像或anaconda虚拟环境可以隔开不同的版本

所以,我本机的Driver Version是430.64

 理论上说10.1及以下的cuda都可以装

# 使用所有GPU
$ docker run --gpus all nvidia/cuda:9.0-base nvidia-smi

# 使用两个GPU
$ docker run --gpus 2 nvidia/cuda:9.0-base nvidia-smi

# 指定GPU运行
$ docker run --gpus '"device=1,2"' nvidia/cuda:9.0-base nvidia-smi
$ docker run --gpus '"device=UUID-ABCDEF,1"' nvidia/cuda:9.0-base nvidia-smi

这里nvidia/cuda:9.0-base是nvidia官方提供的docker镜像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值