使用 torch.multiprocessing 取代torch.distributed.launch启动器
我们可以手动使用 torch.multiprocessing 进行多进程控制。绕开 torch.distributed.launch 自动控制开启和退出进程的一些小毛病
使用时,只需要调用 torch.multiprocessing.spawn,torch.multiprocessing 就会帮助我们自动创建进程。
import torch.multiprocessing as mp mp.spawn(main_worker, nprocs=4, args=(4, myargs))
这里spawn 开启了 nprocs=4 个进程,每个进程执行 main_worker 并向其中传入 local_rank(当前进程 index)和 args(即 4 和 myargs)作为参数
这样我们就将原本需要 torch.distributed.launch 管理的执行内容,封装进 main_worker 函数中
值得注意的是,由于没有 torch.distributed.launch 读取的默认环境变量作为配置,我们需要手动为 init_process_group 指定参数
添加 multiprocessing 后并行训练部分主要与如下代码段有关
# main.py import torch import torch.distributed as dist import torch.multiprocessing as mp mp.spawn(main_worker, nprocs=4, args=(4, myargs)) def main_worker(proc, nprocs, args): dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:23456', world_size=4, rank=gpu) torch.cuda.set_device(args.local_rank) train_dataset = ... train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler) model = ... model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank]) optimizer = optim.SGD(model.parameters()) for epoch in range(100): for batch_idx, (data, target) in enumerate(train_loader): images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) ... output = model(images) loss = criterion(output, target) ... optimizer.zero_grad() loss.backward() optimizer.step()
在使用时,直接使用 python 运行就可以了:
python main.py
使用 Apex 再加速
Apex 是 NVIDIA 开源的用于混合精度训练和分布式训练库。
注意apex不只是混合精度库,也是一个分布式训练库!!!
Apex 对混合精度训练的过程进行了封装,改两三行配置就可以进行混合精度的训练,从而大幅度降低显存占用,节约运算时间。此外,Apex 也提供了对分布式训练的封装,针对 NVIDIA 的 NCCL 通信库进行了优化。
在混合精度训练上,Apex 的封装十分优雅。直接使用 amp.initialize 包装模型和优化器,apex 就会自动帮助我们管理模型参数和优化器的精度了,根据精度需求不同可以传入其他配置参数。
from apex import amp model, optimizer = amp.initialize(model, optimizer)
在分布式训练的封装上,Apex 在胶水层的改动并不大,主要是优化了 NCCL 的通信。因此,大部分代码仍与 torch.distributed 保持一致。使用的时候只需要将
torch.nn.parallel.DistributedDataParallel 替换为 apex.parallel.DistributedDataParallel 用于包装模型。在 API 层面,相对于 torch.distributed ,它可以自动管理一些参数(可以少传一点):
from apex.parallel import DistributedDataParallel model = DistributedDataParallel(model) # # torch.distributed # model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank]) # model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)
在正向传播计算 loss 时,Apex 需要使用 amp.scale_loss 包装,用于根据 loss 值自动对精度进行缩放:
with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward()
汇总一下,Apex 的并行训练部分主要与如下代码段有关
# main.py import torch import argparse import torch.distributed as dist from apex.parallel import DistributedDataParallel parser = argparse.ArgumentParser() parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training') args = parser.parse_args() dist.init_process_group(backend='nccl') torch.cuda.set_device(args.local_rank) train_dataset = ... train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler) model = ... model, optimizer = amp.initialize(model, optimizer) model = DistributedDataParallel(model, device_ids=[args.local_rank]) optimizer = optim.SGD(model.parameters()) for epoch in range(100): for batch_idx, (data, target) in enumerate(train_loader): images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) ... output = model(images) loss = criterion(output, target) optimizer.zero_grad() with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step()
在使用时,调用 torch.distributed.launch 启动器启动:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py
Pytorch分布式训练/多卡训练(二) —— Data Parallel并行(DDP)(2.3)(torch.multiprocessing(spawn) & Apex)
于 2021-08-21 15:00:58 首次发布