看懂代码中的pytorch并行计算

torch.multiprocessing.spawn——执行多进程并行任务

1. torch.multiprocessing模块

torch.multiprocessing是pytorch中用于多进程并行计算的模块

2. torch.multiprocessing.spawn方法

用于在多个进程中,并行地执行指定的函数

torch.distributed.lauch/ torchrun不同,这两个是命令行工具,用于并行执行指定的Python脚本

import torch.multiprocessing as mp

mp.spawn(fn, args=(), nprocs=1, join=True, deamon=False, start_method='spawn')

参数:

  • fn:目标函数
  • args: 传递给目标函数地参数,是一个元组
  • nprocs:要启动的进程数量
  • join:是否等待所有进程完成后再返回
  • daemon:如果为True,则子进程会作为守护进程运行
  • start_method:进程启动的方法,可以是‘spawn’,'fork',或'forkserver', 默认是‘spawn’,因为在多GPU场景中更安全

示例:


                
PyTorch中,可以使用并行计算来加速训练和推理过。PyTorch提供了多种实并行计算的方法,例如使用DataParallelDistributedDataParallel模块。引用中提到的Datawhale大家庭学习PyTorch的第一部分中,可能会介绍相关的内容。 其中,DataParallel模块是一种简单的方式,可以在多个GPU上运行模型。通过将模型包装在DataParallel中,可以自动将数据切分到多个GPU上,并在每个GPU上执行前向传播和反向传播。这样可以加快训练速度并提高模型的性能。 另外,DistributedDataParallel模块是用于分布式训练的方法。它可以在多台机器上的多个GPU之间分配数据和模型,并使用分布式的方式进行训练。这样可以进一步提高训练速度和模型的性能。 总结来说,PyTorch提供了多种并行计算的方法,可以根据具体的需求选择合适的方法来加速计算过程。例如使用DataParallel在多个GPU上运行模型,或者使用DistributedDataParallel在分布式环境下进行训练。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [pytorch基础知识之:张量-自动求导-并行计算](https://blog.csdn.net/weixin_52836217/article/details/126821655)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值