看懂代码中的pytorch并行计算

torch.multiprocessing.spawn——执行多进程并行任务

1. torch.multiprocessing模块

torch.multiprocessing是pytorch中用于多进程并行计算的模块

2. torch.multiprocessing.spawn方法

用于在多个进程中,并行地执行指定的函数

torch.distributed.lauch/ torchrun不同,这两个是命令行工具,用于并行执行指定的Python脚本

import torch.multiprocessing as mp

mp.spawn(fn, args=(), nprocs=1, join=True, deamon=False, start_method='spawn')

参数:

  • fn:目标函数
  • args: 传递给目标函数地参数,是一个元组
  • nprocs:要启动的进程数量
  • join:是否等待所有进程完成后再返回
  • daemon:如果为True,则子进程会作为守护进程运行
  • start_method:进程启动的方法,可以是‘spawn’,'fork',或'forkserver', 默认是‘spawn’,因为在多GPU场景中更安全

示例:

import torch.multiprocessing as mp

def example(rank, world_size):
    print(f"I am process {rank} of {world_size}")

if __name__ == "__main__":
    world_size = 4
    mp.spawn(example, args=(world_size,), nprocs = world_size, join=True)

I am process 0 of 4

I am process 1 of 4

I am process 2 of 4

I am process 3 of 4

  • 函数的第一个参数rank表示进程的索引。这个rank是mp.spawn函数自动传递的(从0到world_size-1),不需要手动传递

3. Moco源代码中的使用

在Moco的源代码中也用到了这个方法,具体的使用情况如下:

首先使用torch.cuda.device_count()自动获取设备可用的GPU数量,将它赋值给nprocs,同时也是main_worker函数的一个参数。

在main_worker函数中,第一个参数gpu就是spawn方法自动传递的,从0到ngpus_per_node-1.

ngpus_per_node = torch.cuda.device_count()
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
def main_worker(gpu, ngpus_per_node, args):
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))
    # suppress printing if not master
    if args.multiprocessing_distributed and args.gpu != 0:
    # 这一块的作用是只在第0个进程的时候打印我们想要打印的东西,当args.gpu !=0 时,
    # 后续的print函数都被重置为pass,也就是不输出任何东西

        def print_pass(*args):
            pass

        builtins.print = print_pass
     ……………………

初始化进程组 torch.distributed.init_process_group

使用DDP之前,首先要正确设置进程组(在函数fn里面进行初始化)。

torch.distributed.init_process_group(
    backend,
    init_method=None,
    timeout=datetime.timedelta(seconds=1800),
    world_size=-1,
    rank=-1,
    store=None,
    group_name='default',
    **kwargs
)

参数:

  • backend:指定分布式后端的名称,例如 ‘nccl’、‘gloo’ 或 ‘mpi’。
  • init_method:初始化方法的 URL 或文件路径。默认为 None,表示使用默认的初始化方法。
  • timeout:初始化过程的超时时间,默认为 1800 秒。
  • world_size:参与分布式训练的总进程数。默认为 -1,表示从环境变量中自动获取。
  • rank:当前进程的排名。默认为 -1,表示从环境变量中自动获取。
  • store:用于存储进程组信息的存储对象。默认为 None,表示使用默认存储。
  • group_name:进程组的名称,默认为 ‘default’。
  • **kwargs:其他可选参数,根据不同的分布式后端而定。

Moco代码中的使用:

if args.distributed:
    if args.dist_url == "env://" and args.rank == -1:
        args.rank = int(os.environ["RANK"])
    if args.multiprocessing_distributed:
        # For multiprocessing distributed training, rank needs to be the
        # global rank among all the processes
        args.rank = args.rank * ngpus_per_node + gpu
        # args.rank原本为0,因此args.rank=gpu,也就是当前的进程编号
    dist.init_process_group(
        backend=args.dist_backend,
        init_method=args.dist_url,
        world_size=args.world_size,
        rank=args.rank
        # args.world_size为-1
    )

数据并行DDP——torch.nn.parallel.DistributedDataParallel

torch.nn.parallel.DistributedDataParallel(model, 
                                          device_ids=None,
                                          output_device=None
                                          )

参数:

  • model:要并行训练的模型
  • device_ids:用于指定模型将被复制到哪些GPU上
  • output_device:用于指定要将输出转移到哪个GPU上。默认值为None,表示将输出保留在各自的GPU上,不进行转移,一般使用默认值即可.

Moco代码中对应的部分:

  1. 第一步先对数据进行采样
    if args.distributed:
        train_sampler = torch.utils.data.distributed.
            DistributedSampler(train_dataset)
    
    
    train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=(train_sampler is None), # 并行计算时shuffle=False
            num_workers=args.workers,
            pin_memory=True,
            sampler=train_sampler,
            drop_last=True,
        )
  2. 第二步获得local_rank(在这里就是args.gpu,也就是当前进程编号)
  3. 使用torch.cuda.set_device(loacal_rank),将进程和GPU进行绑定,即指定当前进程应该使用哪个GPU.
    # (在main_worker函数中)
    torch.cuda.set_device(args.gpu)
    model.cuda(args.gpu)
    model = torch.nn.parallel.DistributedDataParallel(
                    model, device_ids=[args.gpu]
                )
  • 16
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch,可以使用并行计算来加速训练和推理过。PyTorch提供了多种实并行计算的方法,例如使用DataParallelDistributedDataParallel模块。引用提到的Datawhale大家庭学习PyTorch的第一部分,可能会介绍相关的内容。 其,DataParallel模块是一种简单的方式,可以在多个GPU上运行模型。通过将模型包装在DataParallel,可以自动将数据切分到多个GPU上,并在每个GPU上执行前向传播和反向传播。这样可以加快训练速度并提高模型的性能。 另外,DistributedDataParallel模块是用于分布式训练的方法。它可以在多台机器上的多个GPU之间分配数据和模型,并使用分布式的方式进行训练。这样可以进一步提高训练速度和模型的性能。 总结来说,PyTorch提供了多种并行计算的方法,可以根据具体的需求选择合适的方法来加速计算过程。例如使用DataParallel在多个GPU上运行模型,或者使用DistributedDataParallel在分布式环境下进行训练。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [pytorch基础知识之:张量-自动求导-并行计算](https://blog.csdn.net/weixin_52836217/article/details/126821655)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值