分类目录:《机器学习中的数学》总目录
我们经常会需要在已知
P
(
y
∣
x
)
P(y|x)
P(y∣x)时计算
P
(
x
∣
y
)
P(x|y)
P(x∣y)。幸运的是,如果还知道
P
(
x
)
P(x)
P(x),我们可以用贝叶斯定理来实现这一目的:
P
(
x
∣
y
)
=
P
(
y
∣
x
)
P
(
x
)
P
(
y
)
P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)}
P(x∣y)=P(y)P(y∣x)P(x)
注意到 P ( y ) P(y) P(y)出现在上面的公式中,它通常使用 P ( y ) = ∑ x P ( y ∣ x ) P ( x ) P(y)=\sum_xP(y \mid x) P(x) P(y)=∑xP(y∣x)P(x)来计算,所以我们并不需要事先知道 P ( y ) P(y) P(y)的信息。
需要注意的是,在这里我们使用更紧凑的表示法,其中 P ( x , y ) P(x, y) P(x,y)是一个联合分布, P ( x ∣ y ) P(x \mid y) P(x∣y)是一个条件分布。这种分布可以在给定值 x = x i , y = y i x=x_i, y=y_i x=xi,y=yi上进行求值。