机器学习中的数学——贝叶斯定理

分类目录:《机器学习中的数学》总目录


我们经常会需要在已知 P ( y ∣ x ) P(y|x) P(yx)时计算 P ( x ∣ y ) P(x|y) P(xy)。幸运的是,如果还知道 P ( x ) P(x) P(x),我们可以用贝叶斯定理来实现这一目的:
P ( x ∣ y ) = P ( y ∣ x ) P ( x ) P ( y ) P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} P(xy)=P(y)P(yx)P(x)

注意到 P ( y ) P(y) P(y)出现在上面的公式中,它通常使用 P ( y ) = ∑ x P ( y ∣ x ) P ( x ) P(y)=\sum_xP(y \mid x) P(x) P(y)=xP(yx)P(x)来计算,所以我们并不需要事先知道 P ( y ) P(y) P(y)的信息。

需要注意的是,在这里我们使用更紧凑的表示法,其中 P ( x , y ) P(x, y) P(x,y)是一个联合分布, P ( x ∣ y ) P(x \mid y) P(xy)是一个条件分布。这种分布可以在给定值 x = x i , y = y i x=x_i, y=y_i x=xi,y=yi上进行求值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值