机器学习中的数学——连续型随机变量的变换

分类目录:《算法设计与分析》总目录


连续型随机变量的另一技术细节,涉及到处理那种相互之间有确定性函数关系的连续型变量。偎设我们有两个随机变量 x x x y y y满足 y = g ( x ) y=g(x) y=g(x),其中 g g g是可逆的且连续可微的函数。可能有人会想 p y ( y ) = p x ( g − 1 ( y ) ) p_y(y)=p_x(g^{-1}(y)) py(y)=px(g1(y))。但实际上这并不对。

举一个简单的例子,假设我们有两个标量值随机变量 x x x y y y,并且满足 y = x 2 y=\frac{x}{2} y=2x以及 x ∼ U ( 0 , 1 ) x\sim U(0, 1) xU(0,1)。如果我们使用 p y ( y ) = p x ( 2 y ) p_y(y)=p_x(2y) py(y)=px(2y),那么 p p p除了区间0,是以外都为0,并且在这个区间上的值为1。这意味着:
∫ p y ( y ) d y = 1 2 \int p_y(y)dy=\frac{1}{2} py(y)dy=21

而这违背了概率密度积分为1的定义。这个常见错误之所以错是因为它没有考虑到引入函数 g g g后造成的空间变形。回忆一下, x x x落在无穷小的体积为 δ x \delta x δx的区域内的概率为 p ( x ) δ x p(x)\delta x p(x)δx。因为 g g g可能会扩展或者压缩空间,在 x x x空间内的包围着 x x x的无穷小体积在 y y y空间中可能有不同的体积。

为了看出如何改正这个问题,我们回到标量值的情况。我们需要保持下面这个性质:
∣ p y ( g ( x ) ) d y ∣ = ∣ p x ( x ) d x ∣ |p_y(g(x))dy|=|p_x(x)dx| py(g(x))dy=px(x)dx

求解上式,我们得到:
p y ( y ) = p x ( g − 1 ( y ) ) ∣ ∂ x ∂ y ∣ p_y(y)=p_x(g^{-1}(y))|\frac{\partial x}{\partial y}| py(y)=px(g1(y))yx

或者等价地:
p x ( x ) = p y ( g ( x ) ) ∣ ∂ g ( x ) ∂ x ∣ p_x(x)=p_y(g(x))|\frac{\partial g(x)}{\partial x}| px(x)=py(g(x))xg(x)

在高维空间中,微分运算扩展为Jacobian矩阵的行列式——矩阵的每个元素为 J i , j = ∂ x i ∂ y j J_{i, j}=\frac{\partial x_i}{\partial y_j} Ji,j=yjxi。因此,对于实值向量 x x x y y y
p x ( x ) = p y ( g ( x ) ) ∣ det ( ∂ g ( x ) ∂ x ) ∣ p_x(x)=p_y(g(x))|\text{det}(\frac{\partial g(x)}{\partial x})| px(x)=py(g(x))det(xg(x))

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值