随着人工智能生成内容(AIGC)的跨越式发展,算力需求呈爆炸式增长,带动了数据中心的功耗和热管理需求的飞速上升。AI模型训练和推理过程中的高计算资源需求,导致服务器发热量大幅增加,对散热技术提出了更高的要求。根据Colocation America发布的数据,2020年全球数据中心单机柜平均功率已经达到16.5kW,比2008年增加了175%。液冷技术因此成为数据中心散热技术的新热点。
在今年的GTC大会上,英伟达不仅展示了B200和GB200芯片,还重点介绍了与其配套的液冷技术。同时,在2024年SIEPR经济峰会上,英伟达CEO黄仁勋透露,下一代DGX GPU服务器将全面采用液冷散热。英伟达的选择也成为行业内的一个风向标,为液冷技术的发展注入了新的动力。
随着AI技术的不断进步,液冷技术的重要性也愈加凸显。液冷技术不仅能够有效降低数据中心的能耗,还能够提高服务器的运行效率,延长设备的使用寿命。因此,液冷技术正逐步成为数据中心散热解决方案的首选。
数据中心冷却方式的比较
目前数据中心基础设施的制冷方式主要有风冷和液冷两种方式。液冷技术是指利用液体取代空气作为冷却介质,与服务器发热元器件进行热交换,将服务器元器件产生的热量带走,以保证服务器工作在安全温度范围内的一种冷却方法。风冷技术依赖于风扇和空调系统,通过空气流动带走热量。液冷技术通过液体直接冷却发热器件,液体的导热能力是空气的25倍,液体的体积比热容是空气的10003500倍,液体的对流换热系数是空气的1040倍,同等情况下,液冷的冷却能力远高于空气。
相比风冷技术,液冷技术具有更高的冷却效率和更低的能耗。在高密度计算环境中,风冷系统往往无法满足散热需求,而液冷技术则能够有效解决这一问题。此外,液冷技术还具有噪音低、占地面积小等优点,非常适合现代数据中心的高密度布局和绿色节能需求。
AI时代下,液冷发展有哪些推动力?
①算力芯片热功率不断攀升,风冷单点散热已达极限
随着AI技术的快速发展,算力需求不断攀升,芯片发热量和热流密度也在不断增加。当芯片长时间处于高温运行状态,会影响其性能及使用寿命,增加故障率。研究表明,当芯片的工作温度接近70-80℃时