关于n!的位数的问题

首先引入Stirling公式: n!2πn(ne)n
证明:
an=n!ennn+12 ,先证 an 存在极限:夹逼原理。
anan+1=n!ennn+12(n+1)!en+1(n+1)n+1+12=(1+1n)n+121e>1
故有: an>an+1 ,由 an>0 ,故 an 存在极限。
求取极限,利用wallis公式:

应用: 1000! 的位数
1000! 的位数,即求取 lg1000! 的大小。
lgn!lg(2πn(ne)n)=12lg2π+12lgn+nlgnnlge ,将1000带入有。
lg1000!12lg2π+32+30001000lge
lge=0.4342944819,lg(2π)=0.7981798684
故结果为: lg1000!2567.604608 ,故结果为2568位。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值