文章标题

第一篇博客,随便写点正在看的东西,从简单的开始咯。

突然间发现,怎么这些经常看到的词汇我对他们并没有自己认为的那么了解,知道他是谁,却不知道怎么去区分和使用。本文主要介绍的就是这样让我总是分辨不清的三兄弟:先验、后验和似然。首先从概率上去认识,那么他们对应的分布啊,函数啊,以及衍生的其他就能更清楚地区分了。

在介绍各自区别之前,现在脑海中有这么两个概念:状态(或者事件、观测结果)θ、参数x。 不同的参数x会产生不同的观测结果θ。OK,脑海中有这样的概念就行。
先验概率 Prior probability
直接观察状态,得到不同状态的不同概率,不考虑参数的事儿,即P(θ)。举个不那么恰当的栗子,你扔一枚硬币(硬币:能不扔我了么),不管你怎么扔,正扔、反扔、转体360度再扔。。。你都不管,你看最后是正是反。在扔了足够次数后,你得到了正面朝上的概率P(正面朝上),这个概率就称为先验概率。
后验概率 Posterior probability
这回就不一样了,还是让那个硬币,对就是他。扔,可劲儿扔,一遍遍扔,以不同的体位扔,有正面朝上也有反面朝上。于是这回我想知道正面草上的时候,以各种体位扔的概率是多少啊,此处的体位就是参数θ,即P(θ|x)
似然概率 likelihood probability
传递似然就又不一样了,似然是在给定参数下的状态X的概率分布P(X|θ),放到那个硬币的身上,就是说我已经知道用什么体位去扔硬币了,现在想知道在这种体位下,正面朝上的概率是多少呢?

三者的区别就是如上述所说的,如果学过概率论,那就一定知道以下这个公式:
P(θ|x)*P(x)=p(x|θ)*P(θ)
我们把它转换成P(θ|x)=p(x|θ)*P(θ)/P(x)

鉴于分母不变,可以表达成如下正比关系:
Posterior probability∝Likelihood×Prior probability

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值