行人重识别 CUHK03数据集描述

简要描述

MATLAB数据文件格式,1467个行人,收集自The Chinese University of Hong Kong校园内的10个(5对)不同的摄像头。

 

数据集结构:

由三部分组成:

---   "detected":行人框由pedestrian detector绘出,5x1 cell,分别由5对摄像头组收集得到。

      --   843x10 cell,收集自摄像头组pair 1,行数为行人索引,前5列和后5列分别来自同一组的不同摄像头。cell内每个元素为一幅 MxNx3 的行人框图像(uint8 数据类型),个别图像可能空缺,为空集。

      --   440x10 cell,收集自摄像头组pair 2,其它同上。

      --   77x10 cell,收集自摄像头组pair 3,其它同上。

      --   58x10 cell,收集自摄像头组pair 4,其它同上。

      --   49x10 cell,收集自摄像头组pair 5,其它同上。

 

---   "labeled" :5x1 cell,行人框由人类标注,格式和内容大致和上面的"detected"相同。

 

---   "testsets" :20x1 cell,测试协议。由20个 100x2 double类型矩阵组成。

      --   100x2 double,100行代表100个测试样本,第1列为摄像头pair索引,第2列为行人索引。

      --   ...

 

测试协议:

CUHK-03的测试协议有两种。

        第一种为旧的版本(参考文献[1], 即数据集的出处 ),参见数据集中的'testsets'测试协议。具体地说,即随机选出100个行人作为测试集,1160个行人作为训练集,100个行人作为验证集(这里总共1360个行人而不是1467个,这是因为实验中没有用到摄像头组pair 4和5的数据),重复二十次。这种测试协议是single-shot setting.

        第二种测试协议(参考文献[2] )类似于Market-1501,它将数据集分为包含767个行人的训练集和包含700个行人的测试集。在测试阶段,我们随机选择一张图像作为query,剩下的作为gallery,这样的话,对于每个行人,有多个ground truth在gallery中。(新测试协议可以参考这里

 

数据集下载地址:

Google Drive: 

https://drive.google.com/file/d/0BxJeH3p7Ln48djNVVVJtUXh6bXc/edit?usp=sharing

Baidu Cloud Disk ( password: rhjq ):

http://pan.baidu.com/s/1mgklxSc

 

 

 

 

参考文献:

 

[1] Li W, Zhao R, Xiao T, et al. DeepReID: Deep Filter Pairing Neural Network for Person Re-identification[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2014:152-159.

 

 

[2] Zhong Z, Zheng L, Cao D, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. IEEE, 2017: 3652-3661

 

### 行人重识别数据集概述 #### Market1501 数据集 Market 1501 是行人重识别领域最常用的数据集之一。该数据集由论文《Person Re-Identification Meets Image Search》于2015年提出,其格式被广泛采用作为标准格式[^1]。 下载地址通常可以在研究者个人主页或GitHub项目页面找到。使用时需要注意文件结构遵循特定模式以便与其他工具兼容。具体来说,图像按照ID分类存储,并且提供训练/测试分割列表用于评估模型性能。 特征方面,Market1501 包含约3,2668张来自不同摄像头视角下的高质量RGB图象样本,覆盖了大约1,501个独立个体的身份信息。这些特性使得它非常适合用来开发和验证行人再识别算法的有效性和鲁棒性。 ```python import os def load_market1501(path_to_dataset): images_dir = os.path.join(path_to_dataset, 'bounding_box_train') identities = [] for root, _, files in os.walk(images_dir): for file_name in files: if not file_name.endswith('.jpg'): continue identity_id = int(file_name.split('_')[0]) if identity_id not in identities: identities.append(identity_id) return sorted(identities) ``` #### DukeMTMC 数据集 虽然未直接提及于此处提供的参考资料中,但是作为一个重要的补充资料,DukeMTMC是一个大型多目标跟踪与重识别数据库。此集合包含了超过702个身份,在六个不同的摄像机视点下拍摄得到近41,966帧画面以及相应标注。对于想要探索更大规模场景的应用而言非常有价值。 获取方式同样可以通过访问官方发布平台或是第三方托管站点来实现;而处理流程则建议参照原始作者给出的操作指南来进行预处理工作以确保实验条件的一致性。 #### CUHK03 数据集 CUHK03 数据集中存在两种主要版本——传统版(classic split)及新划分方案(new protocol)。前者基于随机选取原则创建而成,后者则是为了更贴近实际应用场景所设计的一种更为严格的评测机制[^2]。 除了上述提到的不同之处外,CUHK03 还提供了两种形式供使用者选择:一种是以MATLAB .mat 文件保存的压缩包`cuhk03_release.zip` ,另一种则是普通的图片档案打包成`.tar.gz` 。当选用后者时,可能还会遇到两个变体选项即普通版(CUHK03) 和带噪声标签的新协议版本 (CUHK03-NP)[^2]。 ```bash wget http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html -O cuhk03_download_page.html # 解压并整理所需资源... ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值