Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4Case 2: 7 1 6求所给的数列最大的子数列之和,同时找出开始和结尾的地方。开始用数组做的,题目不难,但是超时,然后百度搜了这种方法。#include <stdio.h> #include <stdlib.h> int main(void){ int i,t; scanf_s("%d",&t); for (i=1; i<=t; i++){ int j,n,max=-1001,sum=0,tmp=1,*a; int first=0,last=0; scanf_s("%d",&n); a = (int*)malloc(n*sizeof(int));//初始化 计算我们要求的字节数。 for (j=0; j<n; j++) { scanf_s("%d",a+j); sum += a[j]; if (sum>max) { max = sum; first = tmp; last = j+1; } if (sum<0){ sum = 0; tmp = j+2; } } printf("Case %d:\n%d %d %d\n",i,max,first,last); if (i!=t) printf("\n"); free(a);//释放malloc的内存 a = NULL; } return 0; }