给定三个整数数组
A=[A1,A2,…AN],
B=[B1,B2,…BN],
C=[C1,C2,…CN],
请你统计有多少个三元组 (i,j,k) 满足:
1)1≤i,j,k≤N
2)Ai<Bj<Ck
输入格式
第一行包含一个整数 N。
第二行包含 N 个整数 A1,A2,…AN。
第三行包含 N 个整数 B1,B2,…BN。
第四行包含 N 个整数 C1,C2,…CN。
输出格式
一个整数表示答案。
数据范围
1≤N≤105,
0≤Ai,Bi,Ci≤105
输入样例:
3
1 1 1
2 2 2
3 3 3
输出样例:
27
库函数二分
#include <iostream>
#include<algorithm>
using namespace std;
const int N = 100010;
int a[N],b[N],c[N];
int main()
{
int n;
long long res = 0;
cin>>n;
for(int i = 0; i < n; i++) scanf("%d",&a[i]);
for(int i = 0; i < n; i++) scanf("%d",&b[i]);
for(int i = 0; i < n; i++) scanf("%d",&c[i]);
sort(a,a+n); sort(b,b+n); sort(c,c+n);
for(int i = 0; i < n; i++){
int j = lower_bound(a,a+n,b[i])-a;
int k = upper_bound(c,c+n,b[i])-c;
res = res + 1ll*j*(n-k);
}
cout<<res<<endl;
return 0;
}
手写二分做法(1):
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 100010;
int a[N],b[N],c[N];
int lower(int *p,int l,int r,int x){//找出第一个大于或等于x的元素位置
/*
在 1 2 3 4 6 8 9中lower 当 x = 5 返回的是 6的位置
推导:当l=r-1时,mid = (r-1+r)>>1 = r-1 = l,所以p[mid(l)]<x 推导出l = mid+1 = r。
在 1 2 3 4 5 5 5 5 6 8 9中upper 当 x = 5 返回的是最左边5的位置(因为当等于x时是r在移动)
*/
int n = r;
if(p[n]<x) return n+1; //若在最右边的数p[n]仍然小于x,即整个序列都应是小于x的。
if(p[l]>=x) return 0; // 不存在小于x的数
while(l<r){ //整数二分
int mid = l+r>>1;
if(p[mid] >= x) r = mid;
else l = mid+1;
}
return l; //获得的是第一个大于等于x的数的位置
}
int upper(int *p,int l,int r,int x){//找出第一个大于x的元素位置
/*
在 1 2 3 4 6 8 9中upper 当 x = 5 返回的是4的位置
推导:当l=r-1时,mid = (r-1+r+1)>>1 = r,所以p[mid(r)]>x 推导出r = mid-1 = l。
在 1 2 3 4 5 5 5 5 6 8 9中upper 当 x = 5 返回的是最右边5的位置(因为当等于x时是l在移动)
*/
int n = r;
if(p[l] > x) return 0; //若在最左边的数p[l]大于x,即整个序列都应是大于x的。
if(p[n] <= x) return n+1; //不存在大于x的数
while(l<r){ //整数二分
int mid = l+r+1>>1;
if(p[mid] > x) r = mid - 1;
else l = mid;
}
return l+1; //获得的是第一个大于x的数的位置
}
int main(){
int n;
long long res=0;
cin>>n;
for(int i=0;i<n;i++) cin>>a[i];
for(int i=0;i<n;i++) cin>>b[i];
for(int i=0;i<n;i++) cin>>c[i];
sort(a,a+n); sort(b,b+n); sort(c,c+n);
for(int i = 0; i < n; i++){
int x = lower(a,0,n-1,b[i]); //在有序序列中找出第一个大于或等于b[i]的元素位置
int y = upper(c,0,n-1,b[i]); //在有序序列中找出第一个大于b[i]的元素位置
res += 1LL*x*(n-y); //n-1-y+1 = n-y
}
cout<<res;
return 0;
}
手写二分做法(2):
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 100010;
int a[N],b[N],c[N];
int lower(int x,int n){
int l = 0, r = n;
while(l<r){
int mid = l + r + 1 >> 1;
if(a[mid] > x) r = mid - 1;
else l = mid;
}
while(a[l] == x && l > 0) l--;
return l;
}
int uper(int x,int n){
int l = 0, r = n;
while(l<r){
int mid = l + r >> 1;
if(c[mid] > x) r = mid;
else l = mid + 1;
}
if(c[l] <= x) return n+1;
while(c[l] == x && l < n + 1) l++;
return l;
}
int main(){
int n;
long long res = 0;
cin>>n;
for(int i = 1; i <= n; i++ ) cin>>a[i];
for(int i = 1; i <= n; i++ ) cin>>b[i];
for(int i = 1; i <= n; i++ ) cin>>c[i];
sort(a+1,a+n+1); sort(b+1,b+n+1); sort(c+1,c+n+1);
for(int i = 1; i <= n; i++ ){
int x = lower(b[i],n); //获得最大小于b[i]的位置
int y = uper(b[i],n); //获得最小大于b[i]的位置
// cout<<x<<" "<<y<<endl;
res += 1LL * x * (n-y+1);
}
cout<<res;
return 0;
}
前缀和做法:
#include<iostream>
using namespace std;
const int N = 100010;
int a[N],b[N],c[N],sa[N],sc[N],cnta[N],cntc[N];
int main(){
int n;
long long ans = 0;
cin>>n;
for(int i = 1; i <= n; i++ ){
cin>>a[i];
cnta[a[i]]++;
}
sa[0] = cnta[0];
for(int i = 1; i < N; i++ ) sa[i] = sa[i-1] + cnta[i];
for(int i = 1; i <= n; i++ ) cin>>b[i];
int maxn = 0;
for(int i = 1; i <= n; i++ ){
cin>>c[i];
cntc[c[i]]++;
}
sc[0] = cntc[0];
for(int i = 1; i < N; i++ ) sc[i] = sc[i-1] + cntc[i];
for(int i = 1; i <= n; i++ ){
ans += 1LL * sa[b[i]-1] * (sc[N-1] - sc[b[i]]);
}
cout<<ans;
return 0;
}