坐标旋转知识(ACM)

一、围绕原点旋转

如下图, 在2维坐标上,有一点 p ( x , y ) p(x, y) p(x,y) , 直线 o p op op的长度为 r r r, 直线 o p op op和x轴的正向的夹角为 a a a。 直线 o p op op围绕原点做逆时针方向 b b b度的旋转,到达 p ′ ( s , t ) p'(s,t) p(s,t)
在这里插入图片描述

s = r c o s ( a + b ) = r c o s ( a ) c o s ( b ) – r s i n ( a ) s i n ( b ) s = r cos(a + b) = r cos(a)cos(b) – r sin(a)sin(b) s=rcos(a+b)=rcos(a)cos(b)rsin(a)sin(b) (1.1)
t = r s i n ( a + b ) = r s i n ( a ) c o s ( b ) + r c o s ( a ) s i n ( b ) t = r sin(a + b) = r sin(a)cos(b) + r cos(a) sin(b) t=rsin(a+b)=rsin(a)cos(b)+rcos(a)sin(b) (1.2)
其中 x = r c o s ( a ) x = r cos(a) x=rcos(a) , y = r s i n ( a ) y = r sin(a) y=rsin(a)
代入(1.1), (1.2) 得
s = x c o s ( b ) – y s i n ( b ) s = x cos(b) – y sin(b) s=xcos(b)ysin(b) (1.3)
t = x s i n ( b ) + y c o s ( b ) t = x sin(b) + y cos(b) t=xsin(b)+ycos(b) (1.4)
那么矩阵表达式就是:
( s t )   = ( c o s β − s i n β s i n β c o s β ) × ( x y ) \begin{pmatrix} s \\ t \end{pmatrix} \ = \begin{pmatrix} cos\beta \quad -sin\beta \\ sin\beta \quad cos\beta \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} (st) =(cosβsinβsinβcosβ)×(xy)

矩阵知识

矩阵与行列式的关系

矩阵A 转秩 后变成行列式|A|。

矩 阵 A 表 达 式 : A = ( a 1 a 2 a 3 a 4 ) 矩阵 A 表达式: A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} AA=(a1a3a2a4) 行 列 式 ∣ A ∣ 表 达 式 : ∣ A ∣ = ∣ a 1 a 2 a 3 a 4 ∣ 行列式|A|表达式: |A| = \begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix} AA=a1a3a2a4

矩阵乘法

A矩阵和B矩阵可以做乘法运算必须满足A矩阵的列的数量等于B矩阵的行的数量。
运算规则:A的每一行中的数字对应乘以B的每一列的数字把结果相加起来。

  1. 有两个矩阵:A和B(矩阵实际上就是二维数组),C为 A × B A\times B A×B (注意: A × B ≠ B × A A\times B \not = B\times A A×B=B×A)
    其 中 : A = ( a 1 a 2 a 3 a 4 ) , B = ( b 1 b 2 b 3 b 4 ) 其中:A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} , B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} A=(a1a3a2a4)B=(b1b3b2b4) C = ( c 1 c 2 c 3 c 4 ) = ( a 1 a 2 a 3 a 4 ) × ( b 1 b 2 b 3 b 4 ) C = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \times \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} C=(c1c3c2c4)=(a1a3a2a4)×(b1b3b2b4) c 1 = a 1 × b 1 + a 2 × b 3 c 2 = a 1 × b 2 + a 2 × b 4 c 3 = a 3 × b 1 + a 4 × b 3 c 4 = a 3 × b 2 + a 4 × b 4 c_1 = a_1 \times b_1 + a_2 \times b_3\\ c_2 = a_1 \times b_2 + a_2 \times b_4\\ c_3 = a_3 \times b_1 + a_4 \times b_3\\ c_4 = a_3 \times b_2 + a_4 \times b_4\\ c1=a1×b1+a2×b3c2=a1×b2+a2×b4c3=a3×b1+a4×b3c4=a3×b2+a4×b4

二、坐标系旋转

在这里插入图片描述

参考文章

https://blog.csdn.net/qq_36424540/article/details/81347920
https://blog.csdn.net/qq_39445165/article/details/82347059

  • 5
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值