sklearn-决策树

1.用于分类
2.参数一:
criterion,不纯度
gini:基尼系数,信息敏感度低,默认使用
entropy:信息熵,信息敏感度高,容易出现过拟合
当数据欠拟合时使用信息熵,数据维度大,噪音大时使用基尼系数
3.参数二,三:
random_state:整数值,决策树具有随机性,该参数可让树的随机性固定下来。
splitter参数值有:best,random;当值为random时可怎加决策树的随机性
这两个参数可以用来控制树的过拟合情况
4.剪枝参数:
max_depth:控制决策树层数,树的层数影响到计算量,每增加一层计算量增加一倍当增加层数不能提高结果时可以适当减少层数

min_samples_leaf:控制叶子节点所包含样本数,可与maxdepth搭配使用,找到当前层数下的最优树结构

min_samples_split:当树枝包含多少个样本时可分
min_impurity_decrease:信息增益差值,当父子节点的增益差值小于该值是节点不可分
max_features:限值使用的最大特征数,该参数会降低特征使用的维度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值