N盏灯排成一排,从1到N按顺序依次编号。有N个人也从1到N依次编号。第一个人将灯全部关闭。接着第二个人走过时,把凡是号码是2的倍数的灯的开关拉一下;第三个走过时,把凡是号码是3的倍数的灯的开关拉一下…

有n盏灯排成一排,依次标号1,2,…,n,每盏灯都有一根拉线开关。第一个人走过时,把所有灯都关上了;接着第二个人走过时,把凡是号码是2的倍数的灯的开关拉一下;第三个走过时,把凡是号码是3的倍数的灯的开关拉一下;…;最后,第n个人走过时,把最后那盏灯的开关拉一下。

#include<iostream>
#include<vector>
using namespace std;
int main() {
	int n=0;
	cin >> n;
	vector<bool>a;//创建一个动态数组
	for (int i = 1; i <= n; i++) 
		a.push_back(0);
	for (int j=2;j<=n;j++)
		for (int i = 1; i <= n/j; i++) {
			auto anElement = a.begin() + i * j - 1;
			*anElement = 1 - *anElement;
		}
	for (bool aa : a)//基于范围的for循环
		cout << aa << " ";
	return 0;
}
### 回答1: 题目假设有n个盏灯(n为不大于5000的正整数),从1到n按顺序编号,初始时全部处于开启状态;同时有m个人(m为不大于n的正整数),从1到m依次编号。每个人依次进行操作,第i个人将所有编号为i的倍数开关状态进行一次取反操作(即开启的变为关闭关闭的变为开启)。 ### 回答2: 每个人可以按照以下规则对进行操作: 1. 第i个人只对所有序号为i的倍数进行操作(包括打开和关闭); 2. 如果原来是开着的,那么第i个人对它进行一次操作后,它就会关闭;如果它原来是关着的,那么第i个人对它进行一次操作后,它就会打开。 问最终有多少盏灯是开着的。 首先需要明确的是,在操作的过程中,若一个数i的因子个数为奇数,则它最后状态会变为开启,反之,若它的因子个数为偶数,则最后状态会为关闭。因为一个数的因子总是成对出现的,除了平方数,它自身作为因子只会算一次。这是实际问题中的一个数学规律。 所以我们只需要确定1到n每个数的因子个数,即可得到最终结果。可以采用暴力的方法,在1到n循环,依次确定每个数的因子个数。时间复杂度为O(n^2)。但是此时n最大为5000,效率会比较低。 更高效的方法是采用线性筛法求1到n每个数的因子个数。首先,每个数a的因子个数一定等于它的因子b的因子个数加1,其中b为a的质因子。所以,我们可以在筛素数的同时,预处理出每个数i的最小质因子p[i],以及它生成的后继数p[i]*j(j为i的不包括p[i]因子的因子)的最小质因子p[i*j],再根据上述规律求出每个数的因子个数。 最后,根据得到的因子个数统计开着的的个数即可。 代码如下: ### 回答3: 每个人顺序来到这些前,会按照以下规则对部分进行开关操作: 1. 第一个将所有编号为奇数的关闭2. 第二个将所有编号3倍数进行开关操作:闭合状态则打开,打开状态则关闭3. 第三个将所有编号为4的倍数进行开关操作:闭合状态则打开,打开状态则关闭; 4. 以此类推,第k个人依次对所有编号为k的倍数进行开关操作,即闭合状态则打开,打开状态则关闭; 最后统计还有多少盏灯处于打开状态。 解题思路: 这道题先注意读题,其他博客上方法很多其实都编到了题目中,甚至题目所强调的m<=n都没看到(我翻了两页没看到)。 正题:这道题有一重循环肯定是跑不掉的,即m个人依次对每个编号为k的倍数进行开关操作的这个循环。 现在不处理k和m,我们先把步骤3解析一下,编号为4的倍数进行开关操作。它本来就是开的,变成闭的;是闭的,这里变成开的,开关相反。类似题目中快排的标杆左右划分,以下称为原始开关状态。 其原理是,一次开关操作后,编号为4倍数+1的状态会被改变,编号为8倍数+1的状态又会被改变一次,编号12倍数+1的状态又会被改变一次。经过检查得知,K倍数+1也一样。所以,每到一个人1~K-1的亮灭状态是不会改变的。 于是可以把1~n的原始开关状态预处理出来,用bool类型存储。 以上面编号为4的情况作为例子: $ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 1 &2 &3 &4 &5 &6 &7 &8 &9 \\ \hline \texttt{O} & \texttt{O} &\texttt{O} &X &\texttt{O} &\texttt{O} &\texttt{O} &X &\texttt{O}\\ \hline \end{array} $ O为初始化开的,X为初始化关的,1~3号状态不变,4、8状态变化,5、9依然是开着的。 再从1到m枚举每个人,将其负责的编号以及它的倍数对应状态进行转化,转化方式由原始开关状态决定,用异或运算符^表示: bool[i]=bool[i]^1 //将开关状态取反 获取数组的某个元素的状态就能用bool[n]的形式来操作。因为排除了不需要转化的部分,不需要枚举1~k-1,所以最后只需要统计bool数组中为true的元素个数即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Grausam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值