【矩阵论】Chapter 3—线性映射和线性变换知识点总结复习

本文围绕线性代数展开,介绍了线性映射及其矩阵表示,包括映射定义、线性映射定义、运算等,还阐述了线性映射的值域和核、线性变换、酉变换和正交变换、同态和同构、不变子空间等概念,给出了相关定理及推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 线性映射及其矩阵表示

  • 映射定义

    A , B A,B A,B是两个集合,如果存在一个规则 f f f,使得对于 A A A中的元素 x x x都有 B B B中唯一的元素 y y y与之对应,则称 f f f是从 A A A B B B的映射,记作: f : A → B f:A\rightarrow B f:AB。在映射 f : A → B f:A\rightarrow B f:AB中, A A A的元素 x x x被映射到 B B B的元素 y y y,我们通常写作 f ( x ) = y f(x)=y f(x)=y

    如果 ∀ x 1 , x 2 ∈ A , x 1 ≠ x 2 , f ( x 1 ) ≠ f ( x 2 ) \forall x_1,x_2\in A,x_1\neq x_2,f(x_1)\neq f(x_2) x1,x2A,x1=x2,f(x1)=f(x2),则称映射 f : A → B f:A\rightarrow B f:AB单射的;

    如果 ∀ y ∈ B , ∃ x ∈ A , f ( x ) = y \forall y\in B,\exist x\in A,f(x)=y yB,xA,f(x)=y,则称映射 f : A → B f:A\rightarrow B f:AB满射的;

    如果映射 f : A → B f:A\rightarrow B f:AB既满足单射又满足满射,则称映射 f : A → B f:A\rightarrow B f:AB双射的。

  • 线性映射定义

    V , W V,W V,W是在数域 F F F上的向量空间,如果 ∀ v 1 , v 2 ∈ V , ∀ α 1 , α 2 ∈ F \forall v_1,v_2\in V,\forall \alpha_1,\alpha_2\in F v1,v2V,α1,α2F σ ( α 1 v 1 + α 2 v 2 ) = α 1 σ ( v 1 ) + α 2 σ ( v 2 ) \sigma(\alpha_1v_1+\alpha_2v_2)=\alpha_1\sigma(v_1)+\alpha_2\sigma(v_2) σ(α1v1+α2v2)=α1σ(v1)+α2σ(v2),则从 V V V W W W的映射 σ \sigma σ称为线性映射。

  • 线性映射定理

    σ , γ \sigma,\gamma σ,γ是线性空间 V V V W W W的线性映射,则:

    1. σ ( 0 ) = 0 \sigma(0)=0 σ(0)=0

    2. ∀ x ∈ V 1 , σ ( − x ) = − σ ( x ) \forall x\in V_1,\sigma(-x)=-\sigma(x) xV1,σ(x)=σ(x)

    3. 如果 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn V 1 V_1 V1的一组向量, k 1 , ⋯   , k n ∈ F k_1,\cdots,k_n\in F k1,,knF,则有

      σ ( k 1 x 1 + ⋯ + k n x n ) = k 1 σ ( x 1 ) + ⋯ + k n σ ( x n ) \sigma(k_1x_1+\cdots+k_nx_n)=k_1\sigma(x_1)+\cdots+k_n\sigma(x_n) σ(k1x1++knxn)=k1σ(x1)++knσ(xn)

    4. 如果 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn V 1 V_1 V1的一组线性相关向量,则 σ ( x 1 ) , ⋯   , σ ( x n ) \sigma(x_1),\cdots,\sigma(x_n) σ(x1),,σ(xn) V 2 V_2 V2中的一组线性相关向量;并且当且仅当 σ \sigma σ是一一映射时, V 1 V_1 V1中的线性无关向量组的像(像即是线性映射的值域)是 V 2 V_2 V2中的线性无关向量组。

    5. 如果 v 1 , ⋯   , v n v_1,\cdots,v_n v1,,vn V V V的一组基,且 σ ( v i ) = γ ( v i ) ( 1 ≤ i ≤ n ) \sigma(v_i)=\gamma(v_i)(1\leq i\leq n) σ(vi)=γ(vi)(1in),则 σ = γ \sigma=\gamma σ=γ。==说明线性映射由基像组唯一确定。=

  • 线性映射运算

    V 1 V_1 V1 V 2 V_2 V2的所有线性映射组成的集合记为 φ ( V 1 , V 2 ) \varphi(V_1,V_2) φ(V1,V2),类似地, φ ( V 1 , V 3 ) , φ ( V 2 , V 3 ) \varphi(V_1,V_3),\varphi(V_2,V_3) φ(V1,V3),φ(V2,V3)分别表示 V 1 V_1 V1 V 3 V_3 V3的所有线性映射组成的集合和 V 2 V_2 V2 V 3 V_3 V3的所有线性映射组成的集合

    σ , γ ∈ φ ( V 1 , V 2 ) \sigma,\gamma \in \varphi(V_1,V_2) σ,γφ(V1,V2),定义它们的和 σ + γ \sigma+\gamma σ+γ ( σ + γ ) ( x ) = σ ( x ) + γ ( x ) , ∀ x ∈ V 1 (\sigma+\gamma)(x)=\sigma(x)+\gamma(x),\forall x\in V_1 (σ+γ)(x)=σ(x)+γ(x),xV1

    1. σ , γ ∈ φ ( V 1 , V 2 ) \sigma,\gamma \in \varphi(V_1,V_2) σ,γφ(V1,V2),则 σ + γ ∈ φ ( V 1 , V 2 ) \sigma+\gamma \in \varphi(V_1,V_2) σ+γφ(V1,V2)
    2. σ ∈ φ ( V 1 , V 2 ) , γ ∈ φ ( V 2 , V 3 ) \sigma\in \varphi(V_1,V_2),\gamma \in \varphi(V_2,V_3) σφ(V1,V2),γφ(V2,V3),则 σ γ ∈ φ ( V 1 , V 2 ) \sigma \gamma \in \varphi(V_1,V_2) σγφ(V1,V2)

    线性映射的加法适合交换律和结合律,乘法适合结合律,标量乘法适合结合律,分配律。

  • 重要定理

    σ ∈ φ ( V 1 , V 2 ) \sigma \in \varphi(V_1,V_2) σφ(V1,V2),如果 σ \sigma σ是可逆映射,则 σ − 1 ∈ φ ( V 2 , V 1 ) \sigma^{-1}\in \varphi(V_2,V_1) σ1φ(V2,V1)

  • 线性映射的矩阵表示

    σ : U → V \sigma:U\rightarrow V σ:UV是一个线性映射, [ u 1 , ⋯   , u n ] [u_1,\cdots,u_n] [u1,,un] U U U的一组基, σ \sigma σ完全由 σ ( u 1 ) , ⋯   , σ ( u n ) \sigma(u_1),\cdots,\sigma(u_n) σ(u1),,σ(un)确定,如果 u = x 1 u 1 + ⋯   , x n u n u=x_1u_1+\cdots,x_nu_n u=x1u1+,xnun,则 σ ( u ) = x 1 σ ( u 1 ) + ⋯ + x n σ ( u n ) \sigma(u)=x_1\sigma(u_1)+\cdots+x_n\sigma(u_n) σ(u)=x1σ(u1)++xnσ(un)

    v 1 , ⋯   , v m v_1,\cdots,v_m v1,,vm V V V的一组基,则
    σ ( u 1 ) = a 11 v 1 + ⋯ + a 1 n v m   ⋮ σ ( u n ) = a n 1 v 1 + ⋯ + a n n v m   \sigma(u_1)=a_{11}v_1+\cdots+a_{1n}v_m\\\ \vdots\\ \sigma(u_n)=a_{n1}v_1+\cdots+a_{nn}v_m\ σ(u1)=a11v1++a1nvm σ(un)=an1v1++annvm 
    [ σ ( u 1 ) , ⋯   , σ ( u n ) ] = [ v 1 , ⋯   , v m ] A [\sigma(u_1),\cdots,\sigma(u_n)]=[v_1,\cdots,v_m]A [σ(u1),,σ(un)]=[v1,,vm]A,其中 A = ( a 11 ⋯ a 1 n ⋮ ⋮ ⋮ a n 1 ⋯ a n n ) A=\begin{pmatrix}a_{11}&\cdots &a_{1n}\\\vdots&\vdots&\vdots\\a_{n1}&\cdots & a_{nn}\end{pmatrix} A= a11an1a1nann 。矩阵 A A A称为线性映射 σ \sigma σ U U U的基 [ u 1 , ⋯   , u n ] [u_1,\cdots,u_n] [u1,,un] V V V的基 [ v 1 , ⋯   , v n ] [v_1,\cdots,v_n] [v1,,vn]下的表示矩阵。

  • 重要定理

    设设 σ \sigma σ为数域 F F F上线性空间 U U U V V V的线性映射,其中 u 1 , ⋯   , u n u_1,\cdots,u_n u1,,un U U U的一组基, v 1 , ⋯   , v m v_1,\cdots,v_m v1,,vm V V V的一组基, σ \sigma σ在这对基下的矩阵是 A A A ∀ α = ∑ i = 1 n x i u i \forall \alpha =\sum_{\\i=1}^nx_iu_i α=i=1nxiui,有 σ ( α ) = ∑ i = 1 m y i v i \sigma(\alpha)=\sum_{\\i=1}^my_iv_i σ(α)=i=1myivi,则 [ y i , ⋯   , y m ] T = A [ x 1 , ⋯   , x n ] [y_i,\cdots,y_m]^T=A[x_1,\cdots,x_n] [yi,,ym]T=A[x1,,xn]

  • 线性映射在不同基下的矩阵之间的关系

    同一个线性映射在不同基下的矩阵一般是不同的

    σ \sigma σ为数域 F F F n n n维线性空间 U U U n n n维线性空间 V V V的线性映射,其中 u 1 , ⋯   , u n u_1,\cdots,u_n u1,,un u 1 ′ , ⋯   , u n ′ u_1',\cdots,u'_n u1,,un U U U的两组基,由 u 1 , ⋯   , u n u_1,\cdots,u_n u1,,un u 1 ′ , ⋯   , u n ′ u_1',\cdots,u'_n u1,,un的过渡矩阵是 Q Q Q v 1 , ⋯   , v m v_1,\cdots,v_m v1,,vm v 1 ′ , ⋯   , v m ′ v_1',\cdots,v_m' v1,,vm V V V的两组基,由 v 1 , ⋯   , v m v_1,\cdots,v_m v1,,vm v 1 ′ , ⋯   , v m ′ v_1',\cdots,v_m' v1,,vm的过渡矩阵是 P P P σ \sigma σ在基 u 1 , ⋯   , u n u_1,\cdots,u_n u1,,un与基 v 1 , ⋯   , v m v_1,\cdots,v_m v1,,vm下的矩阵是 A A A,而在基 u 1 ′ , ⋯   , u n ′ u_1',\cdots,u'_n u1,,un与基 v 1 ′ , ⋯   , v m ′ v_1',\cdots,v_m' v1,,vm的矩阵为 B B B,则 B = P − 1 A Q B=P^{-1}AQ B=P1AQ

    推导:

    因为:
    σ ( u 1 , ⋯   , u n ) = ( v 1 , ⋯   , v m ) A σ ( u 1 ′ , ⋯   , u ′ ) = ( v 1 ′ , ⋯   , v m ′ ) B ( u 1 ′ , ⋯   , u ′ ) = ( u 1 , ⋯   , u n ) Q ( v 1 ′ , ⋯   , v m ′ ) = ( v 1 , ⋯   , v m ) P \sigma(u_1,\cdots,u_n)=(v_1,\cdots,v_m)A\\ \sigma(u_1',\cdots,u')=(v_1',\cdots,v_m')B\\ (u_1',\cdots,u')=(u_1,\cdots,u_n)Q\\ (v_1',\cdots,v_m')=(v_1,\cdots,v_m)P σ(u1,,un)=(v1,,vm)Aσ(u1,,u)=(v1,,vm)B(u1,,u)=(u1,,un)Q(v1,,vm)=(v1,,vm)P
    则把式子代入得到:
    σ ( u 1 ′ , ⋯   , u ′ ) = σ ( u 1 , ⋯   , u n ) Q = ( v 1 , ⋯   , v m ) A Q = ( v 1 ′ , ⋯   , v m ′ ) P − 1 A Q \sigma(u_1',\cdots,u')=\sigma(u_1,\cdots,u_n)Q\\=(v_1,\cdots,v_m)AQ\\=(v_1',\cdots,v_m')P^{-1}AQ σ(u1,,u)=σ(u1,,un)Q=(v1,,vm)AQ=(v1,,vm)P1AQ
    因为线性映射 σ \sigma σ的矩阵由基唯一确定,所以 B = P − 1 A Q B=P^{-1}AQ B=P1AQ

  • 相抵

    A , B ∈ F m × n A,B\in F^{m\times n} A,BFm×n,如果存在数域 F F F上的 m m m阶非奇异矩阵 P P P n n n阶非奇异矩阵 Q Q Q使得 B = P A Q B=PAQ B=PAQ,则称 A A A B B B相抵(等价)。

    如果 A A A B B B相抵,则它们可作为 n n n维线性空间 U U U m m m维线性空间 V V V的同一线性映射在两对基所对应的矩阵。

    相抵的充分必要条件是它们有相同的秩。

2 线性映射的值域(像)和核

  • 值域(像)和核的定义

    σ \sigma σ为数域 F F F上线性空间 U U U V V V的线性映射,令 R ( σ ) = I m ( σ ) = { σ ( x ) ∣ x ∈ U } R(\sigma)=I_m(\sigma)=\{\sigma(x)| x\in U\} R(σ)=Im(σ)={σ(x)xU} K e r ( σ ) = N ( σ ) = { x ∈ U ∣ σ ( x ) = 0 } Ker(\sigma)=N(\sigma)=\{x\in U|\sigma(x)=0\} Ker(σ)=N(σ)={xUσ(x)=0}

    R ( σ ) R(\sigma) R(σ)是线性映射 σ \sigma σ的值域(也称像), K e r ( σ ) Ker(\sigma) Ker(σ)是线性映射 σ \sigma σ的核。

    易知 R ( σ ) R(\sigma) R(σ) V V V的一个子空间, K e r ( σ ) Ker(\sigma) Ker(σ) U U U的一个子空间。

  • 值域(像)和核理解

    值域(像)是映射所能到的空间,它包含了所有在映射过程中真实映射到的点,描述了映射的覆盖范围。值域(像)是目标空间 W W W的一个子空间。

    核是映射的零空间,它包含了所有被映射到零的输入向量,描述了映射的非单射性,即存在映射到同一个元素的不同输入。核是定义在 V V V上的一个子空间。

  • 定理

    σ \sigma σ为数域 F F F n n n维线性空间 U U U n n n维线性空间 V V V的线性映射,其中 u 1 , ⋯   , u n u_1,\cdots,u_n u1,,un U U U的一组基, v 1 , ⋯   , v m v_1,\cdots,v_m v1,,vm V V V的一组基, σ \sigma σ在这对基下的矩阵是 A A A,则

    1. R ( σ ) = s p a n ( σ ( u 1 ) , ⋯   , σ ( u n ) ) R(\sigma)=span(\sigma(u_1),\cdots,\sigma(u_n)) R(σ)=span(σ(u1),,σ(un))
    2. r a n k ( σ ) = r a n k ( A ) rank(\sigma)=rank(A) rank(σ)=rank(A)
    3. d i m ( R ( σ ) ) + d i m ( K e r ( σ ) ) = n dim(R(\sigma))+dim(Ker(\sigma))=n dim(R(σ))+dim(Ker(σ))=n

3 线性变换

  • 定义

    V V V是数域 F F F上的线性空间, V V V到自身的线性映射称为 V V V上的线性变换。

  • n n n维线性空间 V V V上的线性变换与矩阵之间的关系

    σ \sigma σ是在 V V V上的线性变换, v 1 , ⋯   , v n v_1,\cdots,v_n v1,,vn是一组基,则
    σ ( v 1 ) = a 11 v 1 + ⋯ + a 1 n v m   ⋮ σ ( v n ) = a n 1 v 1 + ⋯ + a n n v m   \sigma(v_1)=a_{11}v_1+\cdots+a_{1n}v_m\\\ \vdots\\ \sigma(v_n)=a_{n1}v_1+\cdots+a_{nn}v_m\ σ(v1)=a11v1++a1nvm σ(vn)=an1v1++annvm 
    [ σ ( v 1 ) , ⋯   , σ ( v n ) ] = [ v 1 , ⋯   , v m ] A [\sigma(v_1),\cdots,\sigma(v_n)]=[v_1,\cdots,v_m]A [σ(v1),,σ(vn)]=[v1,,vm]A,其中 A = ( a 11 ⋯ a 1 n ⋮ ⋮ ⋮ a n 1 ⋯ a n n ) A=\begin{pmatrix}a_{11}&\cdots &a_{1n}\\\vdots&\vdots&\vdots\\a_{n1}&\cdots & a_{nn}\end{pmatrix} A= a11an1a1nann 。矩阵 A A A称为线性变换 σ \sigma σ U U U的基 [ v 1 , ⋯   , v n ] [v_1,\cdots,v_n] [v1,,vn]下的表示矩阵。

  • 重要定理

    n n n维线性空间 V V V上线性变换 σ \sigma σ在基 v 1 , ⋯   , v n v_1,\cdots,v_n v1,,vn v 1 ′ , ⋯   , v n ′ v_1',\cdots,v_n' v1,,vn下的矩阵分别为 A A A B B B,由基 v 1 , ⋯   , v n v_1,\cdots,v_n v1,,vn到基 v 1 ′ , ⋯   , v n ′ v_1',\cdots,v_n' v1,,vn的过渡矩阵为 P P P,则 B = P − 1 A P B=P^{-1}AP B=P1AP

    推导:

    因为
    ( v 1 ′ , ⋯   , v n ′ ) = ( v 1 , ⋯   , v n ) P σ ( v 1 , ⋯   , v n ) = ( v 1 , ⋯   , v n ) A σ ( v 1 ′ , ⋯   , v n ′ ) = ( v 1 ′ , ⋯   , v n ′ ) B (v_1',\cdots,v_n')=(v_1,\cdots,v_n)P\\ \sigma(v_1,\cdots,v_n)=(v_1,\cdots,v_n)A\\ \sigma(v_1',\cdots,v_n')=(v_1',\cdots,v_n')B\\ (v1,,vn)=(v1,,vn)Pσ(v1,,vn)=(v1,,vn)Aσ(v1,,vn)=(v1,,vn)B
    则代入得到
    $$

    $$

    σ ( v 1 ′ , ⋯   , v n ′ ) = σ ( v 1 , ⋯   , v n ) P = ( v 1 , ⋯   , v n ) A P σ ( v 1 ′ , ⋯   , v n ′ ) = ( v 1 ′ , ⋯   , v n ′ ) B ( v 1 , ⋯   , v n ) A P = ( v 1 ′ , ⋯   , v n ′ ) B = ( v 1 , ⋯   , v n ) P B \sigma(v_1',\cdots,v_n')=\sigma(v_1,\cdots,v_n)P\\=(v_1,\cdots,v_n)AP\\ \sigma(v_1',\cdots,v_n')=(v_1',\cdots,v_n')B\\ (v_1,\cdots,v_n)AP=(v_1',\cdots,v_n')B=(v_1,\cdots,v_n)PB σ(v1,,vn)=σ(v1,,vn)P=(v1,,vn)APσ(v1,,vn)=(v1,,vn)B(v1,,vn)AP=(v1,,vn)B=(v1,,vn)PB

    所以 A P = P B AP=PB AP=PB,左乘 P − 1 P^{-1} P1,得 B = P − 1 A P B=P^{-1}AP B=P1AP

  • 相似

    A , B ∈ F m × n A,B\in F^{m\times n} A,BFm×n,如果存在可逆矩阵 P ∈ F n × n P\in F^{n\times n} PFn×n使得 B = P − 1 A B B=P^{-1}AB B=P1AB,则称 A A A B B B相似。

4 酉变换和正交变换

  • 定义

    V V V n n n维酉(欧式)空间(一个在复数(实数)域上的内积空间), σ : V → V \sigma:V\rightarrow V σ:VV是线性变换,如果
    ∀ x ∈ V , ∣ ∣ σ ( x ) ∣ ∣ = ∣ ∣ x ∣ ∣ \forall x\in V,||\sigma(x)||=||x|| xV,∣∣σ(x)∣∣=∣∣x∣∣
    σ \sigma σ就称为酉(正交)变换

  • 定理

    1. V V V n n n维酉(欧式)空间(一个在复数(实数)域上的内积空间),如果 σ : V → V \sigma:V\rightarrow V σ:VV是酉(正交)变换,则
      ∀ x , y ∈ V , ( σ ( x ) , σ ( y ) ) > = ( x , y ) \forall x,y\in V,(\sigma(x),\sigma(y))>=(x,y) x,yV,(σ(x),σ(y))>=(x,y)

    2. 即酉(正交变换)保持向量的内积。

    3. 如果 v 1 , ⋯   , v n v_1,\cdots,v_n v1,,vn V V V的一组标准正交基,则 σ ( v 1 ) , ⋯   , σ ( v n ) \sigma(v_1),\cdots,\sigma(v_n) σ(v1),,σ(vn)也是 V V V的一组标准正交基。

    4. σ \sigma σ V V V的任意一组标准正交基下的矩阵是酉(正交)矩阵。

    5. v = [ v 1 , ⋯   , v n ] v=[v_1,\cdots,v_n] v=[v1,,vn]是酉(欧式)空间 V V V的一组标准正交基, A A A σ : V → V \sigma: V\rightarrow V σ:VV在基 v v v的表示矩阵为 A A A,则 σ \sigma σ是一个酉(正交)变换当且仅当 A H A = I ( A T = I ) A^HA=I(A^T=I) AHA=I(AT=I)

      即, A A A的列向量组成了 C n ( R n ) C^{n}(R^n) Cn(Rn)的标准正交基。

5 同态和同构

  • 定义

    V V V W W W是在相同数域 F F F上的两个向量空间, σ : V → W \sigma:V\rightarrow W σ:VW是线性变换(也称为同态)。如果 σ \sigma σ是一一对应的,则称为同构。

    如果存在从 V V V W W W的同构,则称 V V V W W W同构。

    对于同构 σ : V → W , k e r ( σ ) = { 0 }   a n d   σ ( V ) = W \sigma: V\rightarrow W,ker(\sigma)=\{0\} \space and \space \sigma(V)=W σ:VW,ker(σ)={0} and σ(V)=W

  • 定理

    1. V V V W W W是在相同数域 F F F上的两个向量空间, σ \sigma σ是从 V V V W W W的同构, S S S V V V的子空间,则 dim ⁡ ( S ) = dim ⁡ ( σ ( S ) ) \dim(S)=\dim(\sigma(S)) dim(S)=dim(σ(S))即,两个同构空间有相同的维数(充要条件)。
    2. σ \sigma σ是从 V V V W W W的同构,则 σ − 1 \sigma^{-1} σ1是从 W W W V V V的同构
    3. 数域 F F F 上任意一个 n n n维 向量空间 V V V同构于向量空间 F n F^n Fn
  • 性质

    同构具有如下性质:

    1. 自反性
    2. 对称性
    3. 传递性

6 不变子空间

  • 定义

    σ : V → V \sigma:V\rightarrow V σ:VV是线性变换,如果 V V V的子空间 S S S满足 ∀ x ∈ S , σ ( x ) ∈ S \forall x\in S, \sigma(x)\in S xS,σ(x)S,即 σ ( x ) ⊂ S \sigma(x)\subset S σ(x)S,则称 S S S是一个不变子空间。

    ==当说到不变子空间时,要指明是在什么映射下是不变的。==利用 σ \sigma σ-不变子空间,我们可以简化 σ \sigma σ的表示矩阵。

  • 矩阵的不变子空间

    A ∈ F n × n A\in F^{n\times n} AFn×n σ A : F n → F n \sigma_A:F^n\rightarrow F^n σA:FnFn被定义为: σ A ( x ) = A x \sigma_A(x)=Ax σA(x)=Ax F n F^n Fn的子空间 S S S如果满足 ∀ x ∈ S , A x ∈ S \forall x\in S, Ax\in S xS,AxS,则称 S S S是$\sigma $-不变子空间。

  • 定理

    1. σ : V → V \sigma:V\rightarrow V σ:VV是线性变换,则两个 σ \sigma σ-不变子空间的交、和、直和也是 σ \sigma σ-不变子空间。
    2. σ \sigma σ是在向量空间 V V V上的线性变换, W = s p a n { x 1 , ⋯   , x k } W=span\{x_1,\cdots,x_k\} W=span{x1,,xk} V V V σ \sigma σ-不变子空间当且仅当 σ ( x i ) ∈ W ( i = 1 , 2 , ⋯   , k ) \sigma(x_i)\in W(i=1,2,\cdots,k) σ(xi)W(i=1,2,,k)
    3. σ \sigma σ是数域 F F F n n n维向量空间 V V V上的线性变换,则 σ \sigma σ可以对角化的充要条件是 V V V可以分解成 σ \sigma σ一维不变子空间的直和。
    4. σ \sigma σ是数域 F F F n n n维向量空间 V V V上的线性变换,则 σ \sigma σ V V V的一组基下的矩阵为形如 ( A 11 A 12 0 A 22 ) \begin{pmatrix}A_{11}&A_{12}\\0&A_{22}\end{pmatrix} (A110A12A22)的块上三角矩阵的充要条件是 σ \sigma σ的非平凡的不变子空间。
    5. σ \sigma σ是数域 F F F n n n维向量空间 V V V上的线性变换,则 σ \sigma σ V V V的一组基下的矩阵为块对角巨好着呢的充要条件是 V V V可以分解成 σ \sigma σ若干个非平凡不变子空间的直和。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HeZephyr

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值