一.代数结构及其相关的一些概念.
代数结构:代数结构是一个多元组,多元组中的元素是集合、二元运算、二元关系,且必须包括至少一个集合和一个二元运算或二元关系.
代数结构公理:一个代数结构需要满足的特定条件称为代数结构的公理.
下面将给出一些比较常见的代数结构公理.
封闭性:称集合
S
S
S关于二元运算
⋅
\cdot
⋅满足封闭性,当且仅当:
x
,
y
∈
S
⇒
x
⋅
y
∈
S
x,y\in S\Rightarrow x\cdot y\in S
x,y∈S⇒x⋅y∈S
交换律:称集合
S
S
S关于二元运算
⋅
\cdot
⋅满足交换律,当且仅当:
x
,
y
∈
S
⇒
x
⋅
y
=
y
⋅
x
x,y\in S\Rightarrow x\cdot y=y\cdot x
x,y∈S⇒x⋅y=y⋅x
结合律:称集合
S
S
S关于二元运算
⋅
\cdot
⋅满足结合律,当且仅当:
x
,
y
,
z
∈
S
⇒
x
⋅
y
⋅
z
=
x
⋅
(
y
⋅
z
)
x,y,z\in S\Rightarrow x\cdot y \cdot z=x\cdot(y\cdot z)
x,y,z∈S⇒x⋅y⋅z=x⋅(y⋅z)
分配律:称集合
S
S
S关于二元运算
+
,
×
+,\times
+,×满足
×
\times
×对
+
+
+的分配律,当且仅当:
x
,
y
,
z
∈
S
⇒
z
×
(
x
+
y
)
=
z
×
x
+
z
×
y
(
x
+
y
)
×
z
=
x
×
z
+
y
×
z
x,y,z\in S\\ \Rightarrow z\times(x+y)=z\times x+z\times y\\ (x+y)\times z=x\times z+y\times z
x,y,z∈S⇒z×(x+y)=z×x+z×y(x+y)×z=x×z+y×z
单位元:称
e
e
e为二元运算
⋅
\cdot
⋅的单位元,当且仅当:
∀
x
,
x
⋅
e
=
e
⋅
x
=
x
\forall x,x\cdot e=e\cdot x=x
∀x,x⋅e=e⋅x=x
可逆性:称元素
x
x
x在二元运算
⋅
\cdot
⋅下可逆,当且仅当:
∃
y
1
,
x
⋅
y
1
=
e
∃
y
2
,
y
2
⋅
x
=
e
\exists y_1,x\cdot y_1=e\\ \exists y_2,y_2\cdot x=e
∃y1,x⋅y1=e∃y2,y2⋅x=e
常见的代数结构有群(原群、半群、幺半群、群、阿贝尔群)、环(环、交换环、域)、偏序集(偏序集、全序集、格)、线性空间(线性空间、模).
二.群相关的代数结构.
原群:定义一个原群是由一个集合
S
S
S与一个二元运算
⋅
\cdot
⋅组成的二元组
G
=
(
S
,
⋅
)
G=(S,\cdot)
G=(S,⋅),满足:
1.封闭性.集合
S
S
S关于
⋅
\cdot
⋅封闭.
半群:定义一个半群是由一个集合
S
S
S与一个二元运算
⋅
\cdot
⋅组成的二元组
G
=
(
S
,
⋅
)
G=(S,\cdot)
G=(S,⋅),满足:
1.封闭性.集合
S
S
S关于
⋅
\cdot
⋅满足封闭性.
2.结合律.集合
S
S
S关于
⋅
\cdot
⋅满足结合律.
幺半群:定义一个幺半群是由一个集合
S
S
S与一个二元运算
⋅
\cdot
⋅组成的二元组
G
=
(
S
,
⋅
)
G=(S,\cdot)
G=(S,⋅),满足:
1.封闭性.集合
S
S
S关于
⋅
\cdot
⋅满足封闭性.
2.结合律.集合
S
S
S关于
⋅
\cdot
⋅满足结合律.
3.单位元.
⋅
\cdot
⋅的至少一个单位元存在
S
S
S中.
群:定义一个群是由一个集合
S
S
S与一个二元运算
⋅
\cdot
⋅组成的二元组
G
=
(
S
,
⋅
)
G=(S,\cdot)
G=(S,⋅),满足:
1.封闭性.集合
S
S
S关于
⋅
\cdot
⋅满足封闭性.
2.结合律.集合
S
S
S关于
⋅
\cdot
⋅满足结合律.
3.单位元.
⋅
\cdot
⋅的至少一个单位元存在
S
S
S中.
4.可逆性.集合
S
S
S内任意元素都可逆且逆元在
S
S
S内.
阿贝尔群:定义一个阿贝尔群是由一个集合
S
S
S与一个二元运算
⋅
\cdot
⋅组成的二元组
G
=
(
S
,
⋅
)
G=(S,\cdot)
G=(S,⋅),满足:
1.封闭性.集合
S
S
S关于
⋅
\cdot
⋅满足封闭性.
2.结合律.集合
S
S
S关于
⋅
\cdot
⋅满足结合律.
3.单位元.
⋅
\cdot
⋅的至少一个单位元存在
S
S
S中.
4.可逆性.集合
S
S
S内任意元素都可逆且逆元在
S
S
S内.
5.交换律.集合
S
S
S关于
⋅
\cdot
⋅满足交换律.
其实这五个代数结构都只是在上一个代数结构的基础上增加了一个代数结构公理而已.
你也可以认为它们之间是这样一个关系:
关于群更加详细的介绍参见群论与置换群入门.
三.环相关的代数结构.
环:定义一个环是由一个集合
S
S
S与两个二元运算
+
,
×
+,\times
+,×组成的三元组
R
=
(
S
,
+
,
×
)
R=(S,+,\times)
R=(S,+,×),满足:
1.
G
=
(
S
,
+
)
G=(S,+)
G=(S,+)是一个阿贝尔群,记其单位元为
e
0
e_0
e0.
2.
G
=
(
S
,
×
)
G=(S,\times)
G=(S,×)是一个幺半群,记其单位元为
e
1
e_1
e1.
3.分配律.集合
S
S
S关于
+
,
×
+,\times
+,×满足
×
\times
×对
+
+
+的分配律.
交换环:定义一个交换环是由一个集合
S
S
S与两个二元运算
+
,
×
+,\times
+,×组成的三元组
R
=
(
S
,
+
,
×
)
R=(S,+,\times)
R=(S,+,×),满足:
1.
R
R
R是一个环.
2.乘法交换律:集合
S
S
S关于
×
\times
×满足交换律.
域:定义一个域是由一个集合
S
S
S与两个二元运算
+
,
×
+,\times
+,×组成的三元组
R
=
(
S
,
+
,
×
)
R=(S,+,\times)
R=(S,+,×),满足:
1.
G
=
(
S
,
+
)
G=(S,+)
G=(S,+)是一个阿贝尔群,记其单位元为
e
0
e_0
e0.
2.
G
=
(
∁
S
e
0
,
×
)
G=(\complement_{S}{e_0},\times)
G=(∁Se0,×)是一个阿贝尔群,即除去
e
0
e_0
e0后其余元素与乘法构成一个阿贝尔群,记其单位元为
e
1
e_1
e1.
3.分配律.集合
S
S
S关于
+
,
×
+,\times
+,×满足
×
\times
×对
+
+
+的分配律.
四.偏序集相关的代数结构.
偏序集:定义一个偏序集是由一个集合
S
S
S与一个二元关系
≤
\leq
≤组成的二元组
O
=
(
S
,
≤
)
O=(S,\leq)
O=(S,≤),满足:
1.自反性.对于任意元素
x
∈
S
x\in S
x∈S,有
x
≤
x
x\leq x
x≤x.
2.传递性.对于任意元素
x
,
y
,
z
∈
S
x,y,z\in S
x,y,z∈S,若
x
≤
y
x\leq y
x≤y且
y
≤
z
y\leq z
y≤z,则
x
≤
z
x\leq z
x≤z.
3.反对称性.对于任意元素
x
,
y
∈
S
x,y\in S
x,y∈S,若
x
≤
y
x\leq y
x≤y且
y
≤
x
y\leq x
y≤x,则
x
=
y
x=y
x=y.
全序集:定义一个偏序集是由一个集合
S
S
S与一个二元关系
≤
\leq
≤组成的二元组
O
=
(
S
,
≤
)
O=(S,\leq)
O=(S,≤),满足:
1.
O
O
O是一个偏序集.
2.对于任意元素
a
,
b
∈
S
a,b\in S
a,b∈S,
a
≤
b
a\leq b
a≤b与
b
≤
a
b\leq a
b≤a里至少有一个满足.
还有一个叫格的代数结构,是一种特殊的偏序集,可以自行寻找资料学习.
有关偏序集的理论参考偏序关系与偏序集相关.
五.线性空间相关的代数结构.
线性空间(向量空间):定义一个线性空间是由两个集合
F
,
V
F,V
F,V与一个两个二元运算
+
,
×
+,\times
+,×组成的二元组
O
=
(
S
,
≤
)
O=(S,\leq)
O=(S,≤),满足:
1.
(
F
,
+
,
×
)
(F,+,\times)
(F,+,×)是一个域.
2.向量加法封闭性.对于任意
x
,
y
∈
V
x,y\in V
x,y∈V,有
x
+
y
∈
V
x+y\in V
x+y∈V.
3.标量乘法封闭性.对于任意
a
∈
F
,
x
∈
V
a\in F,x\in V
a∈F,x∈V,有
a
x
∈
V
ax\in V
ax∈V.
4.向量加法结合律.对于任意
x
,
y
,
z
∈
V
x,y,z\in V
x,y,z∈V,有
x
+
y
+
z
=
x
+
(
y
+
z
)
x+y+z=x+(y+z)
x+y+z=x+(y+z).
5.向量加法交换律.对于任意
x
,
y
∈
V
x,y\in V
x,y∈V,有
x
+
y
=
y
+
x
x+y=y+x
x+y=y+x.
6.向量加法单位元.存在
e
V
∈
V
e_{V}\in V
eV∈V满足对于任意
x
∈
V
x\in V
x∈V,均有
x
+
e
V
=
x
x+e_{V}=x
x+eV=x.
7.向量加法可逆性.对于任意元素
x
∈
V
x\in V
x∈V,均存在
y
∈
V
y\in V
y∈V满足
x
+
y
=
e
V
x+y=e_{V}
x+y=eV.
8.标量乘法关于向量加法满足分配律.对于任意
a
∈
F
,
x
,
y
∈
V
a\in F,x,y\in V
a∈F,x,y∈V,满足
a
(
x
+
y
)
=
a
x
+
a
y
a(x+y)=ax+ay
a(x+y)=ax+ay.
9.标量乘法关于域加法满足分配律.对于任意
a
,
b
,
c
∈
F
a,b,c\in F
a,b,c∈F,满足
a
(
b
+
c
)
=
a
b
+
a
c
a(b+c)=ab+ac
a(b+c)=ab+ac.
10.标量乘法与标量域乘法一致.对于任意
a
,
b
∈
F
,
x
∈
V
a,b\in F,x\in V
a,b∈F,x∈V,满足
a
b
x
=
a
(
b
x
)
abx=a(bx)
abx=a(bx).
11.标量乘法单位元.存在
e
F
∈
F
e_{F}\in F
eF∈F满足对于任意
x
∈
V
x\in V
x∈V,均有
e
F
x
=
x
e_{F}x=x
eFx=x.
可能这个代数结构中的某些专业名词有些难懂,这里解释一下.
标量域:线性空间中的域 ( F , + , × ) (F,+,\times) (F,+,×)称为标量域.
标量:集合 F F F中的元素称为标量.
向量集:线性空间中的集合 V V V称为向量集.
向量:集合 V V V中的元素称为向量.
向量加法:即向量集 V V V中两个元素 x , y x,y x,y之间的加法,记为 x + y x+y x+y.
标量乘法:又称数乘,即标量域 ( F , + , × ) (F,+,\times) (F,+,×)中的某个元素 a a a与向量集中某个元素 x x x的乘法,记为 a x ax ax.
标量域加法:即标量域 ( F , + , × ) (F,+,\times) (F,+,×)中两个元素 a , b a,b a,b之间的加法,记为 a + b a+b a+b.
标量域乘法:即标量域 ( F , + , × ) (F,+,\times) (F,+,×)中两个元素 a , b a,b a,b之间的乘法,记为 a b ab ab.
线性空间还可以拓展出一个代数结构,称为模,本质是把标量域变成了标量环.
有关线性空间的理论参考线性空间与高斯消元.