内容整理自任世军老师的教学资料,也有些是自己做出的证明。若有错漏之处,敬祈指教。
代数系:
\,\,\,\,\,\,\,\,\,\, 设“◦”是非空集合S 上的一个二元代数运算,则称二元组(S, ◦) 为一个(有一个代数运算的)代数系。
一、集合上的二元运算:
- 定义:
- 二元运算:
\,\,\,\,\,\,\,\,\,\, 设X 是一个集合,一个从X与X的笛卡尔积 到X 的一个映射φ 称为X上的一个二元代数运算。
- 二元运算:
- 两个基本性质:
-
结合律:
\,\,\,\,\,\,\,\,\,\, 结合律是一些二元代数运算所满足的运算规律。假设◦为定义在集合S上的二元代数运算,而a,b,c是S中的任意三元素。那么◦满足结合律,当且仅当(a ◦ b) ◦ c = a ◦ (b ◦ c) 。 -
交换律:
\,\,\,\,\,\,\,\,\,\, 交换律是一些二元代数运算所满足的运算规律。假设◦为定义在集合S上的二元代数运算,而a,b是S中的任意二元素。那么◦满足结合律,当且仅当a ◦ b=b ◦ a。
-
二、代数系的两个基本定理:
- 基本定理:
- 定理一:
\,\,\,\,\,\,\,\,\,\, 设(S, ◦) 为一个代数系。如果二元代数运算“◦”满足结合律,则 ∀ a i ∈ S , ( i = 1 , 2 , . . . , n ) a 1 , a 2 , a 3 , . . . , a n \forall a_i\in S,(i=1,2,...,n ) \,\,\,\,\, a_1,a_2,a_3,...,a_n ∀ai∈S,(i=1,2,...,n)a1,a2,a3,...,an
- 定理一: