抽象代数基本概念(一):代数系

本文介绍了抽象代数中的代数系,包括集合上的二元运算、结合律与交换律、代数系的基本定理、代数系的幺元和零元的概念。内容基于任世军老师的教学资料,详细阐述了代数系的结构及其运算性质。
摘要由CSDN通过智能技术生成

内容整理自任世军老师的教学资料,也有些是自己做出的证明。若有错漏之处,敬祈指教。

代数系:

           \,\,\,\,\,\,\,\,\,\, 设“◦”是非空集合S 上的一个二元代数运算,则称二元组(S, ◦) 为一个(有一个代数运算的)代数系。

一、集合上的二元运算:

  • 定义:
    • 二元运算:
                 \,\,\,\,\,\,\,\,\,\, 设X 是一个集合,一个从X与X的笛卡尔积 到X 的一个映射φ 称为X上的一个二元代数运算。

  • 两个基本性质:
    • 结合律:
                 \,\,\,\,\,\,\,\,\,\, 结合律是一些二元代数运算所满足的运算规律。假设◦为定义在集合S上的二元代数运算,而a,b,c是S中的任意三元素。那么◦满足结合律,当且仅当(a ◦ b) ◦ c = a ◦ (b ◦ c) 。

    • 交换律:
                 \,\,\,\,\,\,\,\,\,\, 交换律是一些二元代数运算所满足的运算规律。假设◦为定义在集合S上的二元代数运算,而a,b是S中的任意二元素。那么◦满足结合律,当且仅当a ◦ b=b ◦ a。

二、代数系的两个基本定理:

  • 基本定理:
    • 定理一:
                 \,\,\,\,\,\,\,\,\,\, 设(S, ◦) 为一个代数系。如果二元代数运算“◦”满足结合律,则 ∀ a i ∈ S , ( i = 1 , 2 , . . . , n )       a 1 , a 2 , a 3 , . . . , a n \forall a_i\in S,(i=1,2,...,n ) \,\,\,\,\, a_1,a_2,a_3,...,a_n aiS,(i=1,2,...,n)a1,a2,a3,...,an
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值