Pytorch入门教程学习笔记(三)线性回归简洁实现


说明:本博客是对如何使用pytorch用于深度学习 学习过程的记录和总结。
学习教程为:《动手学深度学习》和https://tangshusen.me/Dive-into-DL-PyTorch/#/
这里推荐这个网址,将动手学深度学习改为了Pytorch实现,很有意义!
代码是借鉴了学习教程并从自己写的Jupyter中导出的,复制进Jupyter可以运行

2.3 简洁实现线性回归

%matplotlib inline
import torch
from torch import nn
from IPython import display
import matplotlib.pyplot as plt
%config InlineBackend.figure_format = "png"
import numpy as np
import random
import sys
sys.path.append("..")
from d2lzh_pytorch import *
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

2.3.1 数据集dataset

#生成与上一节中相同的数据集。其中features是训练数据特征,labels是标签。
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

2.3.2 数据读取方法

在PyTorch中,可以使用data包来获取数据,但是由于data这一单词常被用作变量名,所以可以将导入的data用Data代替。在每次迭代中,随机读取包含10个数据样本的mini-batch。

import torch.utils.data as Data

batch_size = 10
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)
# 随机读取小批量
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
for X, y in data_iter:
    print(X, y)
    break

tensor([[-1.2335,  0.0871],
        [ 0.6279, -0.9398],
        [ 2.0144,  2.2317],
        [-0.7319,  2.5833],
        [-0.5560, -0.3087],
        [-0.2249,  0.3802],
        [ 0.7711, -0.7816],
        [ 1.1329, -0.2213],
        [ 0.2601, -0.9168],
        [-0.2186,  0.4511]]) tensor([ 1.4280,  8.6620,  0.6464, -6.0476,  4.1629,  2.4514,  8.3951,  7.2060,
         7.8397,  2.2217])

2.3.3 模型

在这里插入图片描述

class LinearNet(nn.Module):
    def __init__(self, n_feature):
        super(LinearNet, self).__init__()
        self.linear = nn.Linear(n_feature, 1)
    # forward 定义前向传播
    def forward(self, x):
        y = self.linear(x)
        return y

net = LinearNet(num_inputs)
print(net) # 使用print可以打印出网络的结构

LinearNet(
  (linear): Linear(in_features=2, out_features=1, bias=True)
)

另外还有一种方式是用nn.Sequential来搭建网络,Sequential是一个有序的容器,按照传入Sequential的顺序将网络层依次添加到计算图中。

# 写法一
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # 此处还可以传入其他层
    )

# 写法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......

# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
          ('linear', nn.Linear(num_inputs, 1))
          # ......
        ]))

print(net)
print(net[0])

Sequential(
  (linear): Linear(in_features=2, out_features=1, bias=True)
)
Linear(in_features=2, out_features=1, bias=True)

通过net.parameters()这一方法可以查看模型中可学习参数,函数将返回一个生成器。

线性回归作为一个单层神经网络,线性回归输出层中的神经元和输入层中各个输入完全连接。因此,线性回归的输出层又叫全连接层。

注意:torch.nn仅支持输入一个batch的样本不支持单个样本输入,如果只有单个样本,使用input.unsqueeze(0)来添加一维。

for param in net.parameters():
    print(param)
Parameter containing:
tensor([[-0.7070, -0.6142]], requires_grad=True)
Parameter containing:
tensor([0.5924], requires_grad=True)

2.3.4 模型参数初始化

使用net之前,需要初始化模型的参数,线性回归模型中的权重w和偏差b。PyTorch在init模块中提供了多种参数初始化方法。通过init.normal_将权重参数每个元素初始化为随机采样于均值为0、标准差为0.01的正态分布,b会初始化为零。

from torch.nn import init

init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)  # 也可以直接修改bias的data: net[0].bias.data.fill_(0)

Parameter containing:
tensor([0.], requires_grad=True)

2.3.5 损失函数loss

PyTorch在nn模块中提供了各种损失函数,PyTorch将这些损失函数实现为nn.Module的子类。使用它提供的均方误差损失作为模型的损失函数。

loss = nn.MSELoss()

2.3.6 优化算法

我们也无须自己实现小批量随机梯度下降算法。torch.optim模块提供了很多常用的优化算法比如SGD、Adam和RMSProp等。创建一个用于优化net所有参数的优化器实例,并指定学习率为0.03的小批量随机梯度下降(SGD)为优化算法。

import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.03)
print(optimizer)
SGD (
Parameter Group 0
    dampening: 0
    lr: 0.03
    momentum: 0
    nesterov: False
    weight_decay: 0
)
#我们还可以为不同子网络设置不同的学习率,这在finetune时经常用到。例:
optimizer =optim.SGD([
                # 如果对某个参数不指定学习率,就使用最外层的默认学习率
                {'params': net.subnet1.parameters()}, # lr=0.03
                {'params': net.subnet2.parameters(), 'lr': 0.01}
            ], lr=0.03)

有时候不想让学习率固定成一个常数,那如何调整学习率呢?主要有两种做法。一种是修改optimizer.param_groups中对应的学习率,另一种是更简单也是较为推荐的做法——新建优化器,由于optimizer十分轻量级,构建开销很小,故而可以构建新的optimizer。但是后者对于使用动量的优化器(如Adam),会丢失动量等状态信息,可能会造成损失函数的收敛出现震荡等情况。

# 调整学习率
for param_group in optimizer.param_groups:
    param_group['lr'] *= 0.1 # 学习率为之前的0.1倍

2.3.7 训练模型

在训练模型时,通过调用optim实例的step函数来迭代模型参数。按照小批量随机梯度下降的定义,我们在step函数中指明批量大小,从而对批量中样本梯度求平均。

num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))
dense = net[0]
print(true_w, dense.weight)
print(true_b, dense.bias)
epoch 1, loss: 0.008213
epoch 2, loss: 0.002961
epoch 3, loss: 0.000643
[2, -3.4] Parameter containing:
tensor([[ 1.9896, -3.3848]], requires_grad=True)
4.2 Parameter containing:
tensor([4.1823], requires_grad=True)

torch.utils.data模块提供了有关数据处理的工具,torch.nn模块定义了大量神经网络的层,torch.nn.init模块定义了各种初始化方法,torch.optim模块提供了很多常用的优化算法。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值