堆叠体体积求值的范围问题:已知堆叠体三视图,求该堆叠体体积的最大值和最小值

题目:求这个堆叠体的体积最大值和最小值。

理论依据仍然是使用俯视图标注法,即笔者这篇文章介绍的详细步骤:

https://zhuanlan.zhihu.com/p/602290167

注:能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)为三视图,这是工程界一种对物体几何形状约定俗成的抽象表达方式。

之所以有最大值和最小值,说明俯视图有些位置的立方体个数无法唯一确定。

从数字1 开始突破:

左边:横着看过去都是1
下面:竖着看过去都是1

(1) 第三列一定能够确定,标 1, 如下图黄色所示。因为如果标2,就会与主视图里的 1 矛盾了,故只能标1.

浅绿色的3,代表从左往右看看到3的高度,说明粉红色两个位置一定有一个位置为3.

第一个粉红色位置可以确定为3,因为如果第二个粉红色位置为3,就会和主视图中第二列的2矛盾。

红色区域如果填3,就会和左视图第二列的2相矛盾。

所以最后能够确认的三个位置如黄色区域所示:

体积最大:空行不能随便填,尽可能多,但是不能超过行和列的限制。

答案见下图红色:

体积最小:上图灰色是错误的。因为和主视图和左视图矛盾了。

故能确定出绿色区域为2,其他区域填1即可做到体积最小。

解题步骤总结

  1. 把能够唯一确定的先标注出来
  2. 体积最大:让其他位置尽可能多,但不能违反其他两种视图的约束
  3. 体积最小:行列相同数交叉位置一次性满足
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值