一次函数旋转的数学练习题

将一次函数 ( y = x + 3 ) 的图像绕其与 X 轴的交点顺时针旋转 75 度后,新函数的表达式为 ( y = -\frac{\sqrt{3}}{3}x - \sqrt{3} )。以下是具体推导过程:


  1. 确定旋转中心
    原函数 ( y = x + 3 ) 与 X 轴的交点通过令 ( y = 0 ) 解得:
    [
    x + 3 = 0 \implies x = -3
    ]
    因此,旋转中心为 ( (-3, 0) )。

  1. 坐标变换与旋转公式
    绕任意点旋转需分三步:
  2. 平移坐标系:将旋转中心 ( (-3, 0) ) 移至原点,原坐标变为 ( (x + 3, y) );
  3. 应用旋转矩阵:顺时针旋转 75°(即逆时针旋转 -75°),矩阵为:
    [
    x’ = (x + 3)\cos75^\circ + y\sin75^\circ \
    y’ = y\cos75^\circ - (x + 3)\sin75^\circ
    ]
  4. 平移回原坐标系:得到旋转后的坐标 ( (x’ - 3, y’) )。

  1. 代入原函数并化简
    原函数 ( y = x + 3 ) 上的点满足 ( y = x + 3 ),代入旋转公式:
    [
    \begin{cases}
    x’ = (x + 3)\cos75^\circ + (x + 3)\sin75^\circ - 3 \
    y’ = (x + 3)\cos75^\circ - (x + 3)\sin75^\circ
    \end{cases}
    ]
    提取公共因子 ( (x + 3) ) 并化简:
    [
    x’ = (x + 3)(\cos75^\circ + \sin75^\circ) - 3 \
    y’ = (x + 3)(\cos75^\circ - \sin75^\circ)
    ]
    进一步代入三角函数值:
    [
    \cos75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}, \quad \sin75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}
    ]
    得到:
    [
    \cos75^\circ + \sin75^\circ = \frac{\sqrt{6}}{2}, \quad \cos75^\circ - \sin75^\circ = -\frac{\sqrt{2}}{2}
    ]
    从而:
    [
    x’ = \frac{\sqrt{6}}{2}(x + 3) - 3, \quad y’ = -\frac{\sqrt{2}}{2}(x + 3)
    ]
    消去 ( x ),最终得到旋转后的函数表达式:
    [
    y = -\frac{\sqrt{3}}{3}x - \sqrt{3}
    ]

  1. 斜率公式验证
    利用斜率变换公式验证结果:
    • 原斜率 ( k = 1 ),顺时针旋转 75° 后的新斜率:

[
k’ = \frac{k - \tan75^\circ}{1 + k\tan75^\circ} = \frac{1 - (2 + \sqrt{3})}{1 + (2 + \sqrt{3})} = -\frac{\sqrt{3}}{3}
]
• 截距 ( b’ = n - mk’ = 0 - (-3)\left(-\frac{\sqrt{3}}{3}\right) = -\sqrt{3} ),与推导结果一致。


关键结论
通过坐标变换与斜率公式两种方法,最终得到旋转后的函数表达式为:
y = − 3 3 x − 3 \boxed{y = -\frac{\sqrt{3}}{3}x - \sqrt{3}} y=33 x3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值