将一次函数 ( y = x + 3 ) 的图像绕其与 X 轴的交点顺时针旋转 75 度后,新函数的表达式为 ( y = -\frac{\sqrt{3}}{3}x - \sqrt{3} )。以下是具体推导过程:
- 确定旋转中心
原函数 ( y = x + 3 ) 与 X 轴的交点通过令 ( y = 0 ) 解得:
[
x + 3 = 0 \implies x = -3
]
因此,旋转中心为 ( (-3, 0) )。
- 坐标变换与旋转公式
绕任意点旋转需分三步: - 平移坐标系:将旋转中心 ( (-3, 0) ) 移至原点,原坐标变为 ( (x + 3, y) );
- 应用旋转矩阵:顺时针旋转 75°(即逆时针旋转 -75°),矩阵为:
[
x’ = (x + 3)\cos75^\circ + y\sin75^\circ \
y’ = y\cos75^\circ - (x + 3)\sin75^\circ
] - 平移回原坐标系:得到旋转后的坐标 ( (x’ - 3, y’) )。
- 代入原函数并化简
原函数 ( y = x + 3 ) 上的点满足 ( y = x + 3 ),代入旋转公式:
[
\begin{cases}
x’ = (x + 3)\cos75^\circ + (x + 3)\sin75^\circ - 3 \
y’ = (x + 3)\cos75^\circ - (x + 3)\sin75^\circ
\end{cases}
]
提取公共因子 ( (x + 3) ) 并化简:
[
x’ = (x + 3)(\cos75^\circ + \sin75^\circ) - 3 \
y’ = (x + 3)(\cos75^\circ - \sin75^\circ)
]
进一步代入三角函数值:
[
\cos75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}, \quad \sin75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}
]
得到:
[
\cos75^\circ + \sin75^\circ = \frac{\sqrt{6}}{2}, \quad \cos75^\circ - \sin75^\circ = -\frac{\sqrt{2}}{2}
]
从而:
[
x’ = \frac{\sqrt{6}}{2}(x + 3) - 3, \quad y’ = -\frac{\sqrt{2}}{2}(x + 3)
]
消去 ( x ),最终得到旋转后的函数表达式:
[
y = -\frac{\sqrt{3}}{3}x - \sqrt{3}
]
- 斜率公式验证
利用斜率变换公式验证结果:
• 原斜率 ( k = 1 ),顺时针旋转 75° 后的新斜率:
[
k’ = \frac{k - \tan75^\circ}{1 + k\tan75^\circ} = \frac{1 - (2 + \sqrt{3})}{1 + (2 + \sqrt{3})} = -\frac{\sqrt{3}}{3}
]
• 截距 ( b’ = n - mk’ = 0 - (-3)\left(-\frac{\sqrt{3}}{3}\right) = -\sqrt{3} ),与推导结果一致。
关键结论
通过坐标变换与斜率公式两种方法,最终得到旋转后的函数表达式为:
y
=
−
3
3
x
−
3
\boxed{y = -\frac{\sqrt{3}}{3}x - \sqrt{3}}
y=−33x−3