一次函数的平面直角坐标系练习题

首先,确定原函数 ( y = x + 3 ) 与 X 轴的交点。令 ( y = 0 ),解得 ( x = -3 ),即交点为 ( (-3, 0) )。

接下来,将原图像绕点 ( (-3, 0) ) 顺时针旋转 75 度。步骤如下:

  1. 平移坐标系:将坐标系平移,使得旋转中心 ( (-3, 0) ) 成为原点。新的坐标系中的坐标为:
    [
    x’ = x + 3, \quad y’ = y
    ]
    原直线方程变为 ( y’ = x’ )。

  2. 旋转坐标系:在平移后的坐标系中,顺时针旋转 75 度。旋转矩阵为:
    [
    \begin{bmatrix}
    \cos 75^\circ & \sin 75^\circ \
    -\sin 75^\circ & \cos 75^\circ
    \end{bmatrix}
    ]
    旋转后的直线方程由原直线 ( y’ = x’ ) 变为:
    [
    y’’ = -\frac{\sqrt{3}}{3} x’’
    ]
    其中,斜率为 ( \tan(-30^\circ) = -\frac{\sqrt{3}}{3} )。

  3. 平移回原坐标系:将旋转后的直线方程平移回原坐标系。替换 ( x’’ ) 和 ( y’’ ) 为原坐标:
    [
    x’’ = x + 3, \quad y’’ = y
    ]
    代入旋转后的直线方程得到:
    [
    y = -\frac{\sqrt{3}}{3} (x + 3)
    ]
    展开为标准形式:
    [
    y = -\frac{\sqrt{3}}{3} x - \sqrt{3}
    ]

验证旋转后的点是否正确,例如原直线上的点 ( (0, 3) ) 旋转后坐标为 ( (0.6741, -2.1213) ),代入方程验证正确。

最终答案为:
[
\boxed{y = -\dfrac{\sqrt{3}}{3}x - \sqrt{3}}
]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值