首先,确定原函数 ( y = x + 3 ) 与 X 轴的交点。令 ( y = 0 ),解得 ( x = -3 ),即交点为 ( (-3, 0) )。
接下来,将原图像绕点 ( (-3, 0) ) 顺时针旋转 75 度。步骤如下:
-
平移坐标系:将坐标系平移,使得旋转中心 ( (-3, 0) ) 成为原点。新的坐标系中的坐标为:
[
x’ = x + 3, \quad y’ = y
]
原直线方程变为 ( y’ = x’ )。 -
旋转坐标系:在平移后的坐标系中,顺时针旋转 75 度。旋转矩阵为:
[
\begin{bmatrix}
\cos 75^\circ & \sin 75^\circ \
-\sin 75^\circ & \cos 75^\circ
\end{bmatrix}
]
旋转后的直线方程由原直线 ( y’ = x’ ) 变为:
[
y’’ = -\frac{\sqrt{3}}{3} x’’
]
其中,斜率为 ( \tan(-30^\circ) = -\frac{\sqrt{3}}{3} )。 -
平移回原坐标系:将旋转后的直线方程平移回原坐标系。替换 ( x’’ ) 和 ( y’’ ) 为原坐标:
[
x’’ = x + 3, \quad y’’ = y
]
代入旋转后的直线方程得到:
[
y = -\frac{\sqrt{3}}{3} (x + 3)
]
展开为标准形式:
[
y = -\frac{\sqrt{3}}{3} x - \sqrt{3}
]
验证旋转后的点是否正确,例如原直线上的点 ( (0, 3) ) 旋转后坐标为 ( (0.6741, -2.1213) ),代入方程验证正确。
最终答案为:
[
\boxed{y = -\dfrac{\sqrt{3}}{3}x - \sqrt{3}}
]