数据挖掘在医疗领域的应用与发展
医疗用药错误规则挖掘与改进
在医疗场景中,用药错误是一个不容忽视的问题。通过规则归纳,得出了以下两条高概率规则:
- 若干扰患者数量超过一人,用药错误发生的概率为 90%(18/20)。
- 若护士工作被打断,用药错误发生的概率为 80%(4/5)。
护士们针对这些规则对用药核对系统进行了讨论。在急诊室,负责班次的护士要准备药品(包括药品识别、数量等)。当班次交接会议举行时,班次开始前的准备时间偶尔会少于 30 分钟。在这种情况下,药品无法提前分类,只能在班次中进行。若此时护士的注意力被不安分的患者干扰,就无法对药品准备进行双重核对,从而导致用药错误。
基于此,决定让两名已完成班次的护士为下一班次准备药品,一名负责用药的护士单独核对药品剂量和识别信息,实现总共三名护士的三重核对。通过对比 2002 年 4 - 10 月引入三重核对系统前后的数据,用药错误总数从约 200 例减少到不到 10 例,说明该系统有效提升了护士的用药工作质量。这也引出了“风险挖掘过程”的概念。
主动挖掘与轨迹挖掘
主动挖掘过程
1999 年引入日本发现挑战后,众多数据挖掘者加入相关研讨会,并在 2001 - 2004 年启动了“主动挖掘”国家项目。如今,我们收集数据的能力飞速增长,出现了“信息洪流”现象,但分析和理解海量数据的能力却远远滞后。数据的价值不再取决于数量,而是在于能否快速有效地对其进行缩减、探索、操作和管理。为应对这一问题,知识发现与数据挖掘(KDD)技术应运而生,它能从数据中提取隐含、未知且潜在有用的信息或模式。
要克服信息洪流,主动挖掘需要满足以下三个