时空叶状结构与广义相对论的 3+1 分解
在研究时空的物理性质时,我们常常需要对相关的物理量和方程进行分解,以便更好地理解和处理复杂的物理问题。下面将详细介绍时空叶状结构以及广义相对论的 3+1 分解。
时空叶状结构基础
在开始深入讨论之前,我们先引入一些基本概念。在之前的研究中,我们引入了一个函数 (t),其等值面被视为我们的空间超曲面。基于这个函数,我们定义了这些切片的法向量,并将其分量用 lapse 函数 (\alpha) 和 shift 向量 (\beta^i) 表示。最终,我们将麦克斯韦方程组转化为特定形式(2.92)和(2.93)。之后,我们可以自由选择 (\alpha) 和 (\beta^i),从而确定我们的时间和空间坐标。通常我们说,(\alpha) 和 (\beta^i) 编码了我们的坐标自由度。
例如,想象在由参数 (t) 标记的类空超曲面上任意设置空间坐标。当普通观察者移动到由 (t + dt) 标记的新超曲面时,他们会发现他们的手表前进了固有时 (\alpha dt),并且他们的空间坐标标签移动了 (-\beta^i dt)。
确定新超曲面上空间坐标之间的固有距离需要考虑更多因素,不仅仅是 (\alpha) 和 (\beta^i)。接下来我们将引入空间度规,它是时空度规在空间超曲面上的投影,专门用于进行这些测量。我们还将看到这个空间度规如何从时间切片 (t) 演化到 (t + dt),以及其他所有场的演化情况。
广义相对论的 3+1 分解
现在我们准备讨论爱因斯坦引力场方程的 3+1 分解。之前我们已经引入了几乎所有必要的对象和概念,现在我们需要对时空度规 (g_{ab}) 的爱因斯坦方程(1