目录
一、房价预测问题:
1. 简化模型:
假设1:卧室个数、卫生间个数、居住面积记为 x1,x2,x3
假设2:成交价是各因素加权和 y = w1x1 + w2x2 + w3x3 + b
2. 线性模型:
线性模型可以看做是单层神经网络
3. 衡量预估质量
平方损失:
4. 训练数据
。
5. 参数学习
6. 显式解
总结
- 线性回归是对n维输入的加权,外加偏差
- 使用平方损失来衡量预测值和真实值的差异
- 线性回归有显式解
- 线性回归可以看作单层神经网络
目录
假设1:卧室个数、卫生间个数、居住面积记为 x1,x2,x3
假设2:成交价是各因素加权和 y = w1x1 + w2x2 + w3x3 + b
线性模型可以看做是单层神经网络
平方损失:
。