c++曲线拟合:贝塞尔曲线的控制点计算

废话不说,直接上代码(后面示例点对应的绘制效果):

不计算控制点的原始折线:

优化了代码的实现,使用STL代码更简洁

/**
 * @brief CalculateControlPoint 计算三次贝塞尔的控制点。
 * 三次方贝塞尔曲线由四个点定义: 起点、终点 和两个控制点。
 * @param rawPointVector [in]原始点数组
 * @param firstControlPointVector  [out]第一个控制点,总是比原始点数目少1,和第二个控制点数目相同
 * @param secondControlPointVector [out]第二个控制点,总是比原始点数目少1,和第一个控制点个数相同
 * @return 执行成功返回true,否则返回false。原始点数目必须不少于2,否则失败
 * @note 贝塞尔曲线得到之后,使用如下:
 *          原始点[0],
 *              第一个控制点[0],第二个控制点[0],原始点[1],
 *              第一个控制点[1],第二个控制点[1],原始点[2],
 *              第一个控制点[2],第二个控制点[2],原始点[3],
 *                  .
 *                  .
 *                  .
 *              第一个控制点[n-1],第二个控制点[n-1],原始点[n],
 */
bool CalculateControlPoint(
        const std::vector<Point2D>& rawPointVector,
        std::vector<Point2D>& firstControlPointVector,
        std::vector<Point2D>& secondControlPointVector )
{
    if ( rawPointVector.size( ) < 2 )
    {
        printf("输入点至少是2个\n");
        return false;
    }
    std::size_t nPointSize = rawPointVector.size( ) - 1;
    const Point2D* pRawPoint = rawPointVector.data();
    if ( 1 == nPointSize )
    {
        // 特殊情况: 贝塞尔曲线是直线.

        // 3P1 = 2P0 + P3

        firstControlPointVector.resize(1);
        firstControlPointVector[0].X =(2 * pRawPoint[0].X + pRawPoint[1].X) / 3;
        firstControlPointVector[0].Y = (2 * pRawPoint[0].Y + pRawPoint[1].Y) / 3;
        // P2 = 2P1 – P0
        secondControlPointVector.resize(1);
        secondControlPointVector[0].X = 2 * firstControlPointVector[0].X - pRawPoint[0].X;
        secondControlPointVector[0].Y =	2 * firstControlPointVector[0].Y - pRawPoint[0].Y;
        return true;
    }

    std::vector<double> rhs(nPointSize);
    double* pTmp = rhs.data();
    for (std::size_t i = 1; i < nPointSize - 1; ++i)
    {
        pTmp[i] = 4 * pRawPoint[i].X + 2 * pRawPoint[i + 1].X;
    }
    pTmp[0] = pRawPoint[0].X + 2 * pRawPoint[1].X;
    pTmp[nPointSize - 1] = (8 * pRawPoint[nPointSize - 1].X + pRawPoint[nPointSize].X) / 2.0;

    std::vector<double> x;
    GetFirstControlPoints(rhs,x);

    for (std::size_t i = 1; i < nPointSize - 1; ++i)
        pTmp[i] = 4 * pRawPoint[i].Y + 2 * pRawPoint[i + 1].Y;
    pTmp[0] = pRawPoint[0].Y + 2 * pRawPoint[1].Y;
    pTmp[nPointSize - 1] = (8 * pRawPoint[nPointSize - 1].Y + pRawPoint[nPointSize].Y) / 2.0;

    std::vector<double> y;
    GetFirstControlPoints(rhs,y);
    double* pX = x.data();
    double* pY = y.data();

    firstControlPointVector.resize( nPointSize );
    secondControlPointVector.resize( nPointSize );
    Point2D* pFirstPoints = firstControlPointVector.data();
    Point2D* pSecondPoints = secondControlPointVector.data();
    for (std::size_t i = 0; i < nPointSize; ++i)
    {
        // Second control point
        pFirstPoints[i].X = x[i];
        pFirstPoints[i].Y = y[i];
        if (i < nPointSize - 1)
        {
            pSecondPoints[i].X = 2 * pRawPoint[i + 1].X - pX[i + 1];
            pSecondPoints[i].Y = 2 * pRawPoint[i + 1].Y - pY[i + 1];
        }
        else
        {
            pSecondPoints[i].X = (pRawPoint[nPointSize].X + pX[nPointSize - 1]) / 2;
            pSecondPoints[i].Y = (pRawPoint[nPointSize].Y + pY[nPointSize - 1]) / 2;
        }
    }

    return true;
}

用到的其它函数:


#include <math.h>
#include <vector>
typedef struct tagPoint2D
{
    inline tagPoint2D( double x=0.0, double y=0.0):X(x),Y(y){}
    double X;
    double Y;
}Point2D;


static std::vector<double> GetFirstControlPoints(
        const std::vector<double>& rhs, std::vector<double>& x )
{
    std::size_t n = rhs.size( );
    x.resize( n );
    std::vector<double> tmp( n );

    double b = 2.0;
    x[0] = rhs[0] / b;
    for (std::size_t i = 1; i < n; ++i ) // Decomposition and forward substitution.
    {
        tmp[i] = 1 / b;
        b = (i < n - 1 ? 4.0 : 3.5) - tmp[i];
        x[i] = (rhs[i] - x[i - 1]) / b;
    }
    for (std::size_t i = 1; i < n; ++i )
        x[n - i - 1] -= tmp[n - i] * x[n - i]; // Backsubstitution.

    return x;
}

使用样例:

    std::vector<BezierSplie::Point2D> rawPointVector;
	rawPointVector.push_back( BezierSplie::Point2D(2.0f,20.0f) );
	rawPointVector.push_back( BezierSplie::Point2D(2.5f,19.0f) );
	rawPointVector.push_back( BezierSplie::Point2D(3.0f,16.0f) );
	rawPointVector.push_back( BezierSplie::Point2D(4.0f,10.5f) );
	rawPointVector.push_back( BezierSplie::Point2D(5.0f,13.5f) );
	rawPointVector.push_back( BezierSplie::Point2D(6.0f,16.0f) );
	rawPointVector.push_back( BezierSplie::Point2D(7.0f,20.0f) );
	rawPointVector.push_back( BezierSplie::Point2D(8.0f,25.0f) );
    std::vector<BezierSplie::Point2D> firstPointVector;
    std::vector<BezierSplie::Point2D> secondPointVector;
    BezierSplie::CalculateControlPoint( rawPointVector,firstPointVector,secondPointVector );
    printf("\nfirst control point:\n");
    for( auto it = firstPointVector.begin(); it != firstPointVector.end(); ++it )
    {
        printf("(%f,%f);", it ->X, it ->Y );
    }
    printf( "\nsecond second point: \n");
    for( auto it = secondPointVector.begin(); it != secondPointVector.end(); ++it )
    {
        printf("(%f,%f);", it ->X, it ->Y );
    }

计算原理:

先来看2个点的贝塞尔:

B(t)=(1−t)3P0+3(1−t)2tPc0+3(1−t)t2Pc1+t3P1 (1)

B(t)=−3(1−t)2P0+3(3t2−4t+1)Pc0+3(2t−3t2)Pc1+3t2P1 (2)

B′′(t)=6(1−t)P0+3(6t−4)P1+3(2−6t)P2+6tP3 (3)

 

2个控制点为直线,那么(1)式中的2次和3次项为0

得到:

3Pc1 = 2P0+P1 (*1)

Pc2  = 2Pc1–P0 (*2)

拓展到i阶的贝塞尔

Bi(t)=(1−t)3Pi−1+3(1−t)2tPci+3(1−t)t2Pci+1+t3Pi  (i=1,..,n) (4)

对应的1阶导:

Bi(t)=−3(1−t)2Pi−1+3(3t2−4t+1)Pci+3(2t−3t2)Pci+1+3t2Pi (i=1,..,n)(5)

一阶倒数连续的条件:Bi−1(1)=Bi(0)得到:

Pci+Pc(i−1)+1=2Pi−1;…(i=2,..,n)  (6

对应的2阶导:

B′′i(t)=6(1−t)Pi−1+6(3t−2)Pci+6(1−3t)Pci+1+6tPi (i=1,..,n)7)

同样二阶导 B’’i-1(1)=B’’i(0) ,得到:

Pc(i−1)+Pci+1=Pci+1+2Pc(i−1)+1 (i=2,..,n) (8)

对贝塞尔所有点,总是有B’’1(0)=0和B’’i(n)=0(因为起始和终止点)

2Pc1−Pc1+1=P0 (9)

2Pcn+1−Pcn=Pn (10)

整合(6)(8)(9)(10),对于第n个点控制点Pcn和Pcn+1,有:

2Pc1+Pc1+1=P0+2P1Pc1+4Pc1+1+Pc3=4P1+2P2 (11)

Pc(i−1)+4Pci+Pc(i+1)=4Pi−1+2Pi (12)

Pc(n−2)+4Pc(n−1)+Pcn=4Pn−2+2Pn−12Pc(n−1)+7Pcn=8Pn−1+Pn (13)

 

(12)是一般表达,如果知道第一个控制点,按照上面公式(6)(8)(9)(10)可以得到第二个控制点。

 

 

csdn不支持格式,WORD截图:

 

 

 

 

  • 5
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值