摩尔定律到底还活着么?

最近看到一些半导体比较有意思的立场,那就是摩尔定律到底还活着么?

众所周知,科学没有国界,但科学家是有国界的。对于芯片行业也是一样,半导体工程技术很多都是商业行为,不仅区分国界,还区分公司。

对于英特尔来说,戈登摩尔是英特尔的联合创始人。摩尔定律一直是英特尔的信仰,英特尔目前的CEO也声称中国半导体工艺落后了10年,并且差距还将继续存在。

“我们正竞相追逐2纳米,然后是1.5纳米,我们看不到尽头。”

当然,英特尔也在困难地维持摩尔定律,不惜巨额投资和财报亏损。

8ab65b94ef0be542cd1a2a62aa8d5cf5.jpeg

对于英伟达来说,口口声声说摩尔定律已死,黄教主提出新的“黄氏定律”。过去10年GPU的AI推理性能提升了1000倍,无惧摩尔定律失效的影响。但实际上,英伟达一直使用最先进的工艺代工GPU,典型的嘴硬,身体还是老实的。

对于台积电来说,其实并没有太多的摩尔定律执念,无非就是代工,只要做好自己,尽力提升晶体管的性能就够了。台积电计划通过芯片的整体创新来提升芯片的性能,包括但不限于先进封装技术。

当然,对于中国的芯片行业来说,必须承认我们落后太多,希望世界等等我们。

dcd3ef3568aa5208cdd2ad57b09da187.jpeg

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值