数字图像处理----区域生长之面积统计

测试对象:骨头的DR照片

测试目标:找出骨头的轮廓,并且测出轮廓内部的面积大小。

采用方法:具体过程由下面的流程图详细说明。

以及每步操作的效果图如下所示:

       

图1 流程图                                                                                        图2 原始图像

                                   

图3 选择ROI区域                                                                                      图4 大津阈值分割

                              

图5 canny边缘检测                                                                                  图6 边缘+原图


其中ROI区域提取、大津阈值、轮廓提取均使用的是opencv提供的库函数进行操作。

这里主要介绍区域生长的使用。

1、种子点的设置:

(1)需要设置种子点,进行生长,适用于灰度图和二值图,并且计算速度快。

(2)不设置种子点,对全图进行遍历,仅适用于二值图。

这里使用的方法(1)

2、种子邻域的选择:

(1)8邻域,适用于二值图。

(2)4邻域,适用于灰度图和二值图。

这里使用的方法(2)

结果显示如下:


具体代码如下所示:

//以下是区域生长代码
int RegionGrow(Point seed)
{
	//循环变量
	int i, j;

	//二维数组direction代表中心像素点8邻域坐标与该点在x和y方向上的偏移,
	//其中第一列为x方向的偏移,第二列为y方向的偏移
	//int direction[8][2]={{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1}};
	int direction[4][2]={{0,-1},{1,0},{0,1},{-1,0}};

	//栈申请,此处假定进栈的像素最多为图像总像素数
	Point *stack=new Point[imageROI.rows*imageROI.cols];

	//栈顶指针
	int top;

	//当前正处理的点和弹出的点
	Point currentPoint, popPoint;

	//循环变量,遍历array数组的第一维下标
	int k;

	//标记变量
	int label;

	//临时变量
	int temp1;

	//统计数量
	int count=0;

	//记录种子像素的灰度值
	g_srcImage.at<unsigned char>(seed.y,seed.x)=0;

	//将给定种子点入栈
	top=0;
	stack[top].x=seed.x;
	stack[top].y=seed.y;

	//堆栈
	while(top>-1){
		//弹出栈顶元素,该元素已经生长过
		popPoint.x=stack[top].x;
		popPoint.y=stack[top].y;
		top--;

		//考察弹出像素周围是否有没有生长的像素
		for(k=0;k<4;k++){

			//待考察的邻域点
			currentPoint.x=popPoint.x+direction[k][0];
			currentPoint.y=popPoint.y+direction[k][1];

			//如果待考察的点不在图像内,则跳过
			if(currentPoint.x<476||currentPoint.x>1470||currentPoint.y<398||currentPoint.y>1400)
				continue;
			/*g_srcImage.at<unsigned char>(currentPoint.y,currentPoint.x)=0;
			count++;*/
			//该点标号
			label=g_srcImage.at<unsigned char>(currentPoint.y,currentPoint.x);

			//弹出的点周围有尚没生长的点
			if(label!=255&&label!=0){
				//没碰到边界,将其进栈处理,给该点置生长标记0
				g_srcImage.at<unsigned char>(currentPoint.y,currentPoint.x)=0;
				count++;
				top++;
				stack[top].x=currentPoint.x;
				stack[top].y=currentPoint.y;
			}
		}
	}
   //清除缓冲区
	delete []stack;
	return count;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值